The current chemical propulsion systems make often use of hypergolic propellant couples to achieve simple, fast and reliable ignition. These propellants are, however, highly toxic and demand a great deal of safety measures to be produced and handled. Because of this, the last decades have seen an increasing interest in low-cost, low environmental impact alternatives. The objective of this thesis is to study the promising green combination given by amine-based fuels and high test peroxide (HTP). To promote the catalytic decomposition of HTP, three cupric salts were investigated: Copper (II) Nitrate trihydrate (CN), Copper (II) Chloride anhydrous (CC) and dihydrate (CCH). Firstly, the focus was turned to the study of different formulations involving Monoethanolamine (MEA) and both CC and CN. Then, in order to improve the characteristics of this baseline, especially in terms of viscosity and specific impulse, the attention was brought to the investigation of other amines, among which, N,N-Dimethylethylenediamine (DMEDA) returned very satisfactory results when blended with MEA. Indeed, it was possible to lower the kinematic viscosity and improve the theoretical specific impulse by a remarkable margin of 20 s, reaching comparable values to those provided by the couple MMH/NTO. In fact, a 20:80 (MEA-DMEDA) mixture of the two amines with 1% of CCH was able to achieve an ignition delay time (IDT) of 18 ms, while providing gravimetric (Isp,vac) and volumetric specific impulses (Iv) respectively in the order of 320 s and 400 s・g/cm3 with 98% HTP. As data were collected regarding the properties and performances of different formulations of MEA-based and MEA-DMEDA fuels, this work could serve as a foundation for the development of prospective high-performance green fuels.
Gli odierni sistemi di propulsione chimica spesso impiegano coppie di propellenti ipergolici al fine di ottenere ignizioni semplici, veloci e affidabili. Questi propellenti sono, tuttavia, fortemente tossici e richiedono considerevoli misure di sicurezza per essere prodotti e manipolati. Per questo motivo, gli ultimi decenni hanno visto un crescente interesse nei confronti di alternative a basso costo e basso impatto ambientale. L’obiettivo della presente tesi è quello di studiare la promettente combinazione verde data dai combustibili a base di ammine e perossido di idrogeno ad alta concentrazione (HTP). Per promuovere la decomposizione catalitica dell’HTP, sono stati studiati tre sali rameici: Nitrato Rameico triidrato (CN) e Cloruro Rameico anidro (CC) e diidrato (CCH). Dapprima, l’attenzione è stata rivolta allo studio di diverse formulazioni comprendenti Monoetanolammina (MEA) e sia CC che CN. Quindi, al fine di migliorare le caratteristiche di questo riferimento, soprattutto in termini di viscosità e impulso specifico, l’attenzione si è rivolta allo studio di altre ammine. Tra queste, la N,N-Dimetiletilendiammina (DMEDA) ha restituito risultati molto soddisfacenti quando miscelata con MEA. Difatti, è stato possibile abbassare considerevolmente la viscosità cinematica e migliorare l’impulso specifico teorico di ben 20 s, raggiungendo valori comparabili a quelli forniti dalla coppia MMH/NTO. Infatti, la miscela delle due ammine in rapporto 20:80 (MEA-DMEDA) con l’1% di CCH ha raggiunto un ritardo di accensione (IDT) di 18 ms, fornendo impulsi gravimetrici (Isp,vac) e volumetrici (Iv) rispettivamente nell’ordine di 320 s e 400 s・g/cm3 con 98% HTP. Essendo stati raccolti dati riguardanti le proprietà e le prestazioni di diverse formulazioni di combustibili a base di MEA e MEA-DMEDA, questo lavoro potrebbe rivelarsi utile come fondazione per lo sviluppo di potenziali carburanti verdi ad alte prestazioni.
A hypergolic ignition study of MEA-based green fuels with HTP
ORLANDI, DAVIDE;Caffiero, Luca
2021/2022
Abstract
The current chemical propulsion systems make often use of hypergolic propellant couples to achieve simple, fast and reliable ignition. These propellants are, however, highly toxic and demand a great deal of safety measures to be produced and handled. Because of this, the last decades have seen an increasing interest in low-cost, low environmental impact alternatives. The objective of this thesis is to study the promising green combination given by amine-based fuels and high test peroxide (HTP). To promote the catalytic decomposition of HTP, three cupric salts were investigated: Copper (II) Nitrate trihydrate (CN), Copper (II) Chloride anhydrous (CC) and dihydrate (CCH). Firstly, the focus was turned to the study of different formulations involving Monoethanolamine (MEA) and both CC and CN. Then, in order to improve the characteristics of this baseline, especially in terms of viscosity and specific impulse, the attention was brought to the investigation of other amines, among which, N,N-Dimethylethylenediamine (DMEDA) returned very satisfactory results when blended with MEA. Indeed, it was possible to lower the kinematic viscosity and improve the theoretical specific impulse by a remarkable margin of 20 s, reaching comparable values to those provided by the couple MMH/NTO. In fact, a 20:80 (MEA-DMEDA) mixture of the two amines with 1% of CCH was able to achieve an ignition delay time (IDT) of 18 ms, while providing gravimetric (Isp,vac) and volumetric specific impulses (Iv) respectively in the order of 320 s and 400 s・g/cm3 with 98% HTP. As data were collected regarding the properties and performances of different formulations of MEA-based and MEA-DMEDA fuels, this work could serve as a foundation for the development of prospective high-performance green fuels.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary__Caffiero_Orlandi.pdf
non accessibile
Descrizione: Executive Summary by Luca Caffiero and Davide Orlandi
Dimensione
12.11 MB
Formato
Adobe PDF
|
12.11 MB | Adobe PDF | Visualizza/Apri |
Thesis__Caffiero_Orlandi.pdf
non accessibile
Descrizione: Thesis by Luca Caffiero and Davide Orlandi
Dimensione
138.72 MB
Formato
Adobe PDF
|
138.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209427