The use of shape memory alloys, specifically Nickel-Titanium (Nitinol), has enabled the development of engineering solutions due to their unique properties such as pseudoelasticity and shape memory effect. These properties are associated with the reversible transformation between different crystalline phases of Nitinol as temperature changes, allowing for micromotions and reduced forces to be generated. Special attention has been given to the biomedical field, particularly in surgical procedures, aiming to reduce associated risks. An innovative example is provided by self-knotting sutures, offering a simpler and safer alternative to conventional suturing techniques by eliminating surgical knots. Numerical simulations serve as a valuable tool for assessing the reliability of these devices and predicting their potential in vivo applications. This thesis work introduces a new computational model capable of replicating the mechanical response of an innovative self-knotting Nitinol suture ring. Finite Element Analysis (FEA) was complemented with experimental data previously conducted by CNR in Lecco. Two sizes of sutures with different diameters in the closed configuration were analyzed. The device's usage involves an initial opening phase, where the device is easily deformable at low temperatures and is manually opened by separating its ends. Given the intrinsic variability in this manual opening process, various opening conditions were considered. A second closing phase is planned, wherein the suture, once opened and delivered to the surgeon in the operating room, is inserted into tissues and heated using a few drops of physiological solution to body temperature. When heated above the characteristic phase transition threshold of the alloy, the device assumes its austenitic configuration and regains its original closed ring shape. The closing phase was analyzed under conditions of free recovery, without external constraints, or constrained recovery, to assess suture strength when it's submitted to external forces. To validate the proposed model, numerical simulations reproduced some previously conducted experimental tests, demonstrating the model's reliability. Finally, a simplified examination of the interaction between sutures and biological tissue with varying mechanical properties, based on the anatomical region considered, was conducted. Despite the favorable mechanical response of devices implanted in various biological tissues, it is important to note that anatomical areas suitable for the use of Nitinol sutures remain limited, with reduced mechanical properties. The proposed self-knotting ring sutures represent a significant advancement compared to existing Nitinol sutures, offering improvements in terms of anatomical adaptability, mechanical strength, and the ability to return to their original shape.
L’utilizzo delle leghe a memoria di forma, e in particolare della lega in Nichel – Titanio, ha consentito lo sviluppo di soluzioni ingegneristiche grazie alle particolari proprietà quali pseudoelasticità ed effetto a memoria di forma. Tali proprietà sono correlate alla trasformazione reversibile tra le fasi del reticolo cristallino del Nitinol al variare della temperatura di esercizio e permettono di generare micromovimenti e forze ridotte. Particolare attenzione è stata posta al settore biomedicale, precisamente agli interventi chirurgici, al fine di ridurre i molteplici rischi ad essi correlati. Un esempio innovativo è dato dalle suture auto-annodanti, che propongono una nuova procedura, più semplice e sicura rispetto alle tecniche di sutura convenzionali, eliminando i nodi chirurgici. Le simulazioni numeriche rappresentano uno strumento utile e potente per valutare l’affidabilità di questi dispositivi e prevederne la possibile applicazione in vivo. Nel presente lavoro di tesi è stato proposto un nuovo modello computazionale in grado di replicare la risposta meccanica di un innovativo anello di sutura auto-annodante in Nitinol. L’Analisi ad Elementi Finiti (FEA) è stata affiancata ad una campagna sperimentale precedentemente condotta dal CNR di Lecco. Sono state analizzate due taglie di sutura, che si differenziano per la dimensione dell'anello in configurazione chiusa. L’utilizzo del dispositivo prevede una prima fase di apertura, in cui il dispositivo risulta facilmente deformabile a basse temperature e viene aperto allontanando le due estremità. Questa fase è, ad oggi, svolta manualmente e quindi soggetta a variabilità intrinseca; perciò sono state considerate diverse condizioni di apertura. È prevista inoltre una seconda fase, di chiusura, in cui la sutura dopo essere stata aperta e consegnata al chirurgo in sede operatoria, viene inserita nei tessuti e viene riscaldata attraverso poche gocce di soluzione fisiologica a temperatura corporea; il dispositivo, una volta riscaldato a temperature superiori alla soglia di transizione caratteristica della lega, assume la configurazione austenitica e recupera la forma originaria ad anello chiuso. La fase di chiusura è stata considerata in condizioni di recupero libero, in assenza di vincoli esterni, o in condizioni di recupero vincolato, per valutare la resistenza della sutura soggetta a forze esterne. Per confermare la validità del modello proposto sono state riprodotte, attraverso simulazioni numeriche, alcune prove sperimentali precedentemente condotte, dimostrando l’affidabilità del modello. Infine, è stata considerata in forma semplificata l’interazione tra le suture e lastre di tessuto biologico, con proprietà meccaniche variabili in base al distretto anatomico considerato. Nonostante la performante risposta meccanica dei dispositivi inseriti in vari tessuti biologici, è da notare che le aree anatomiche resistenti all'utilizzo delle suture in Nitinol siano ancora limitate e con ridotte proprietà meccaniche. Le suture ad anello proposte segnano un notevole avanzamento rispetto alle suture in Nitinol già esistenti, poiché presentano miglioramenti in termini di adattabilità anatomica, resistenza meccanica e capacità di ritorno alla forma originale.
Sviluppo di un modello computazionale per suture auto - annodanti
Munafò, Olga
2022/2023
Abstract
The use of shape memory alloys, specifically Nickel-Titanium (Nitinol), has enabled the development of engineering solutions due to their unique properties such as pseudoelasticity and shape memory effect. These properties are associated with the reversible transformation between different crystalline phases of Nitinol as temperature changes, allowing for micromotions and reduced forces to be generated. Special attention has been given to the biomedical field, particularly in surgical procedures, aiming to reduce associated risks. An innovative example is provided by self-knotting sutures, offering a simpler and safer alternative to conventional suturing techniques by eliminating surgical knots. Numerical simulations serve as a valuable tool for assessing the reliability of these devices and predicting their potential in vivo applications. This thesis work introduces a new computational model capable of replicating the mechanical response of an innovative self-knotting Nitinol suture ring. Finite Element Analysis (FEA) was complemented with experimental data previously conducted by CNR in Lecco. Two sizes of sutures with different diameters in the closed configuration were analyzed. The device's usage involves an initial opening phase, where the device is easily deformable at low temperatures and is manually opened by separating its ends. Given the intrinsic variability in this manual opening process, various opening conditions were considered. A second closing phase is planned, wherein the suture, once opened and delivered to the surgeon in the operating room, is inserted into tissues and heated using a few drops of physiological solution to body temperature. When heated above the characteristic phase transition threshold of the alloy, the device assumes its austenitic configuration and regains its original closed ring shape. The closing phase was analyzed under conditions of free recovery, without external constraints, or constrained recovery, to assess suture strength when it's submitted to external forces. To validate the proposed model, numerical simulations reproduced some previously conducted experimental tests, demonstrating the model's reliability. Finally, a simplified examination of the interaction between sutures and biological tissue with varying mechanical properties, based on the anatomical region considered, was conducted. Despite the favorable mechanical response of devices implanted in various biological tissues, it is important to note that anatomical areas suitable for the use of Nitinol sutures remain limited, with reduced mechanical properties. The proposed self-knotting ring sutures represent a significant advancement compared to existing Nitinol sutures, offering improvements in terms of anatomical adaptability, mechanical strength, and the ability to return to their original shape.File | Dimensione | Formato | |
---|---|---|---|
Executive Summary Sviluppo di un modello computazionale per suture auto-annodanti.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
Tesi Sviluppo di un modello computazionale per suture auto-annodanti.pdf
non accessibile
Descrizione: Tesi
Dimensione
6.77 MB
Formato
Adobe PDF
|
6.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209475