Recent developments in satellite platforms have led to the introduction of new and complex mission requirements. Within the AOCS domain, these requirements include multiple and challenging objectives for pointing and observation, subject to stringent constraints, particularly due to highly sensitive instruments and payloads. An increased need of autonomy is crucial for highly populated constellations. In this context, the ability to efficiently plan, optimize, and execute intricate attitude control maneuvers becomes fundamental. This capability is crucial for tackling the ambitious challenges posed by increasingly highperformance and complex missions and satellites. The primary goal of this study is to develop a fast and efficient convex optimization algorithm that can generate complex attitude guidance and control profiles through on-board satellite implementation. This algorithm leverages the latest advancements in convex trajectory optimization to address the Constrained Attitude Control problem, effectively overcoming the inherent limitations in state-of-the-art methods. Notably, these limitations pertain to computation time and complex pointing and integral-type constraints, which are not always easily reducible to geometric constraints. This study initially presents a comprehensive algorithmic framework that allows for simple incorporation and modification of constraint and dynamic formulations. Various types of constraints are formulated and implemented in their convex form, offering a novel approach to pointing constraints in comparison to traditional methods. Moreover, two new formulations for linearized and discretized dynamics are devised and proposed to address crucial precision and feasibility concerns associated with the optimal solution. Additionally, two adaptive mesh refinement schemes are developed and tested. Furthermore, a novel differential formulation of the state variable is introduced to reduce the number of optimization variables. The algorithm is successfully implemented and tested on different real-flight scenarios, with detailed analyses provided for two specific cases. These findings clearly demonstrate the efficiency and potential of this attitude guidance algorithm in effectively addressing the complex challenges of future space missions.
I recenti sviluppi delle piattaforme satellitari hanno portato all’introduzione di nuovi e complessi requisiti di missione. Tra questi, nel dominio dell’AOCS, sono presenti obiettivi multipli ed esigenti di puntamento e osservazione, sottomessi a vincoli stringenti da rispettare, dovuti in particolare a strumenti e payload molto sensibili. In questo contesto, diventa fondamentale avere la capacità di pianificare, ottimizzare ed eseguire rapidamente ed efficientemente manovre complesse di controllo dell’assetto per affrontare le ambiziose sfide poste da missioni e satelliti sempre più performanti e complessi. L’obiettivo di questo lavoro è sviluppare un algoritmo di ottimizzazione convessa in grado di creare profili di guida e controllo dell’assetto complessi in modo efficiente e veloce tramite l’implementazione a bordo del satellite. Questo algoritmo utilizza i più recenti sviluppi dell’ottimizzatione convessa di traiettorie, per risolvere il Constrained Attitude Control problem, superando le limitazioni che i metodi allo stato dell’arte presentano nel trattare questo problema. In particolare, queste limitazioni riguardano il tempo di calcolo e i vincoli complessi di puntamento e di tipo integrale, che non sempre sono facilmente riconducibili a vincoli di tipo geometrico. In questo lavoro, una struttura generale dell’algoritmo è inizialmente sviluppata, permettendo di aggiungere e modificare facilmente la formulazione dei vincoli e della dinamica. Sono stati formulati e implementati diversi tipi di vincoli nella loro forma convessa, proponendo una nuova formulazione per i vincoli di puntamento rispetto all’approccio classico. Inoltre, sono state sviluppate due nuove formulazioni per la dinamica linearizzata e discretizzata, risolvendo vari problemi di precisione e fattibilità della soluzione ottimale. Successivamente, sono stati sviluppati e testati due schemi di raffinamento adattativo della mesh di discretizzazione. Infine, è stata proposta una nuova formulazione differenziale della variabile di stato per ridurre il numero di variabili di ottimizzazione. L’algoritmo è stato implementato e testato con successo su diversi casi realistici, due dei quali sono riportati nel dettaglio, dimostrando l’efficacia e il potenziale che questo algoritmo di guida e controllo d’assetto detiene per affrontare le sfide complesse delle future missioni spaziali.
Innovative on-board guidance algorithm for complex attitude profiles using convex optimization
Leonardi, Francesco
2022/2023
Abstract
Recent developments in satellite platforms have led to the introduction of new and complex mission requirements. Within the AOCS domain, these requirements include multiple and challenging objectives for pointing and observation, subject to stringent constraints, particularly due to highly sensitive instruments and payloads. An increased need of autonomy is crucial for highly populated constellations. In this context, the ability to efficiently plan, optimize, and execute intricate attitude control maneuvers becomes fundamental. This capability is crucial for tackling the ambitious challenges posed by increasingly highperformance and complex missions and satellites. The primary goal of this study is to develop a fast and efficient convex optimization algorithm that can generate complex attitude guidance and control profiles through on-board satellite implementation. This algorithm leverages the latest advancements in convex trajectory optimization to address the Constrained Attitude Control problem, effectively overcoming the inherent limitations in state-of-the-art methods. Notably, these limitations pertain to computation time and complex pointing and integral-type constraints, which are not always easily reducible to geometric constraints. This study initially presents a comprehensive algorithmic framework that allows for simple incorporation and modification of constraint and dynamic formulations. Various types of constraints are formulated and implemented in their convex form, offering a novel approach to pointing constraints in comparison to traditional methods. Moreover, two new formulations for linearized and discretized dynamics are devised and proposed to address crucial precision and feasibility concerns associated with the optimal solution. Additionally, two adaptive mesh refinement schemes are developed and tested. Furthermore, a novel differential formulation of the state variable is introduced to reduce the number of optimization variables. The algorithm is successfully implemented and tested on different real-flight scenarios, with detailed analyses provided for two specific cases. These findings clearly demonstrate the efficiency and potential of this attitude guidance algorithm in effectively addressing the complex challenges of future space missions.File | Dimensione | Formato | |
---|---|---|---|
Final_Thesis_Leonardi_Francesco.pdf
non accessibile
Descrizione: Final thesis Leonardi Francesco
Dimensione
8.91 MB
Formato
Adobe PDF
|
8.91 MB | Adobe PDF | Visualizza/Apri |
Executive_summary_Leonardi_Francesco.pdf
non accessibile
Descrizione: Executive Summary Leonardi Francesco
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209516