The increasing importance of hydrogen in hard-to-abate sectors claims its distributed production at the small scale. Currently, Methane Steam Reforming (MSR) accounts for more than half of hydrogen production, but this large-scale process is characterised by intrinsic limitations related to the significant thermal gradients, CO2 emissions and huge reactor volumes. Thus, the intensification of such reactors should be performed to mitigate these critical bottlenecks, but the realization of efficient small-scale reformers is challenging with conventional reactor design. In this perspective, electrified methane/biogas steam reformers with structured internals have been recognised as the most promising option for the distributed production of hydrogen, due to their compact and flexible design, which guarantees disruptive advantages in terms of improved heat transfer properties, CO2 savings and fast dynamic response. In addition, the use of natural gas and biogas is seen as a mean to fast-track the decarbonization of MSR due to their ubiquitous nature and their favourable economics. For these reasons, in this thesis work the mathematical modelling of an innovative reactor concept studied by the LCCP group is provided. In this reformer the use of highly conductive copper foam/POCS internals, packed with Rh/Al2O3 catalyst pellets, is coupled with Joule heating effect to supply the heat from the reactor centre by means of a resistive element. A mono-dimensional dynamic model (1D) is developed to characterise the behaviour of such reactor, which is assumed to work with the surplus electricity produced through renewable energy sources. In order to follow an optimal operating curve that maximize the use of available electricity, the wire power and the gas hourly space velocity fed to the reactor must be changed in time. The use of a dynamic model enables the study of the transient of these situations and of instantaneous failure events as well, like the interruption of methane stream or the interruption of wire power supply, that may compromise the operation of the unit. The validation through the experimental campaigns done in the LCCP laboratories demonstrates that the 1D dynamic model is more appropriate to predict the results of packed POCS reactors, due to the much smaller radial temperature gradients and the better estimation of the wire temperature with respect to the packed foam reactors. Consequently, the design of the industrial electrified reformer with POCS internals is provided, so that the characterization of its operation can be realized. Considering a reference situation with a space velocity of 16 [sfrac{Nm^3}{kg_{cat}h }] and a volumetric power of 7.79 [sfrac{MW}{m_{bed}^3 }], promising results are obtained in terms of high conversion, low specific energy demand and exceptionally rapid system response, which allows transient operation mode.
La crescente importanza dell’idrogeno in settori “hard-to-abate” richiede la sua produzione distribuita su piccola scala. Attualmente, lo Steam Reforming di Metano (MSR) è responsabile di circa la metà della produzione di idrogeno; tuttavia, questo processo di larga scala è caratterizzato da intrinseche limitazioni relative a significativi gradienti termici, emissioni di CO2 e ampi volumi di reattore. Perciò, l’intensificazione di tali unità deve essere realizzata per mitigare questi critici colli di bottiglia, ma la realizzazione di efficienti reformer su piccola scala è complicata sfruttando un design di reattore convenzionale. A tal fine, steam reformer con interni strutturati ed elettrificati, alimentati con metano/biogas, sono stati riconosciuti come l’opzione più promettente per la produzione distribuita di idrogeno, grazie al loro design compatto e flessibile, che garantisce eccezionali vantaggi in termini di migliori proprietà di scambio termico, riduzione delle emissioni di CO2 e rapida risposta dinamica. In aggiunta, l’utilizzo di gas naturale e biogas è considerato come un mezzo per decarbonizzare velocemente il processo di MSR, grazie alla loro presenza ubiquitaria e la loro convenienza economica. Per tali ragioni, in questo lavoro di tesi è proposta la modellazione matematica di un innovativo concetto di reattore studiato dal gruppo LCCP. In tale reformer, l’utilizzo di interni in rame altamente conduttivi come schiume e POCS, impaccati con pellet catalitici Rh/Al2O3, è combinato con il riscaldamento per effetto Joule, in modo da fornire il calore dal centro del reattore per mezzo di una resistenza elettrica. Un modello dinamico mono-dimensionale (1D) è stato sviluppato per caratterizzare il comportamento di tale reattore, il quale si assume lavori con l’eccesso di elettricità prodotta attraverso fonti energetiche rinnovabili. Affinché si possa seguire una curva operativa di funzionamento ottimale che massimizzi l’utilizzo dell’elettricità disponibile, la potenza di filo e la velocità spaziale del gas alimentato al reattore devono essere modificate nel tempo. L’utilizzo di un modello dinamico consente lo studio del transitorio di tali situazioni e anche di eventi istantanei di malfunzionamento, quali l’interruzione dell’alimentazione di metano o l’interruzione del rifornimento di calore, che potrebbero compromettere la normale operazione dell’unità. La validazione del modello, realizzata per mezzo delle campagne sperimentali condotte nei laboratori LCCP, dimostra che il modello dinamico 1D predice più accuratamente i risultati di interni POCS impaccati, a cause dei minori gradienti termici radiali e una migliore stima della temperatura di filo rispetto a reattori caricati con schiume. Di conseguenza, è stato proposto esclusivamente il design di un reformer elettrificato industriale con interni POCS, cosicché si sono potute caratterizzare le sue performance. Considerando una situazione di riferimento in cui la velocità spaziale è 16 [sfrac{Nm^3}{kg_{cat}h }] e la potenza volumetrica è 7.79 [sfrac{MW}{m_{bed}^3}], sono stati ottenuti risultati promettenti in termini di elevata conversione, bassa richiesta di energia specifica e di una risposta del sistema eccezionalmente rapida, la quale rende possibile un’operazione dinamica.
Mathematical modelling of electrified packed-POCS reactor for low-carbon hydrogen generation via methane/biogas steam reforming
Zanelli, Simone
2022/2023
Abstract
The increasing importance of hydrogen in hard-to-abate sectors claims its distributed production at the small scale. Currently, Methane Steam Reforming (MSR) accounts for more than half of hydrogen production, but this large-scale process is characterised by intrinsic limitations related to the significant thermal gradients, CO2 emissions and huge reactor volumes. Thus, the intensification of such reactors should be performed to mitigate these critical bottlenecks, but the realization of efficient small-scale reformers is challenging with conventional reactor design. In this perspective, electrified methane/biogas steam reformers with structured internals have been recognised as the most promising option for the distributed production of hydrogen, due to their compact and flexible design, which guarantees disruptive advantages in terms of improved heat transfer properties, CO2 savings and fast dynamic response. In addition, the use of natural gas and biogas is seen as a mean to fast-track the decarbonization of MSR due to their ubiquitous nature and their favourable economics. For these reasons, in this thesis work the mathematical modelling of an innovative reactor concept studied by the LCCP group is provided. In this reformer the use of highly conductive copper foam/POCS internals, packed with Rh/Al2O3 catalyst pellets, is coupled with Joule heating effect to supply the heat from the reactor centre by means of a resistive element. A mono-dimensional dynamic model (1D) is developed to characterise the behaviour of such reactor, which is assumed to work with the surplus electricity produced through renewable energy sources. In order to follow an optimal operating curve that maximize the use of available electricity, the wire power and the gas hourly space velocity fed to the reactor must be changed in time. The use of a dynamic model enables the study of the transient of these situations and of instantaneous failure events as well, like the interruption of methane stream or the interruption of wire power supply, that may compromise the operation of the unit. The validation through the experimental campaigns done in the LCCP laboratories demonstrates that the 1D dynamic model is more appropriate to predict the results of packed POCS reactors, due to the much smaller radial temperature gradients and the better estimation of the wire temperature with respect to the packed foam reactors. Consequently, the design of the industrial electrified reformer with POCS internals is provided, so that the characterization of its operation can be realized. Considering a reference situation with a space velocity of 16 [sfrac{Nm^3}{kg_{cat}h }] and a volumetric power of 7.79 [sfrac{MW}{m_{bed}^3 }], promising results are obtained in terms of high conversion, low specific energy demand and exceptionally rapid system response, which allows transient operation mode.File | Dimensione | Formato | |
---|---|---|---|
2023_07_ZANELLI_EXECUTIVE_SUMMARY.pdf
non accessibile
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
2023_07_ZANELLI_MASTER_THESIS.pdf
non accessibile
Dimensione
9.86 MB
Formato
Adobe PDF
|
9.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/209829