In recent decades, drug delivery technologies have gained significant attention in the pharmaceutical field as they offer distinct advantages over conventional drug formulations. Conventional drug administration often suffers from issues such as potential toxicity, bacterial resistance, and inadequate pharmacokinetics. To address these challenges, drug delivery devices have been developed to reduce side effects and improve drug release control. In the last fifteen years, a novel class of non-equilibrium structure, known as Bicontinuous Interfacially Jammed Emulsions gels (bijels) has been developed. These structures are stabilized at their interface by solid nanoparticles, forming a porous interpenetrating structure of two immiscible phases, typically an aqueous and an organic phase. This unique characteristic enables the simultaneous loading and controlled release of both hydrophilic and lipophilic drugs, making bijels an attractive candidate for multi-target drug delivery. In this context, this thesis work was aimed to identify the optimal conditions of the production of bijel-like system and study its potential for drug release applications. The nanoparticles used for the synthesis were Fe3O4 magnetic nanoparticles, that not only provides a high grade of stability for the structure but also gives the possibility of moving the structure by the application of an external magnetic field. ε-caprolactone was selected as the monomer to be polymerized during the synthesis, along with ethanol and TBD, as initiator and catalyst respectively. The first phase of this work was devoted to the identification of the optimal synthesis protocol regarding the formulation, mixing speed and time, storage, unmolding and shaping. The structure was deeply characterized to identify the, along with the physical properties of the bijel. The release mechanism was studied by loading the structures with mimetic drug with certain properties (electrical charges, steric hindrance) and performing release test in medium that simulated physiological conditions. Results showed the percentage of total mass released time and the integral stability of the structures when loaded. ii Finally, in the context of future developments, some preliminary studies were carried out to find a proper analysis technique for the cases in which two mimetic drugs are present in the same solution, so that release test can be carried out in a codelivery application, charging both hydrophobic and hydrophilic compounds into the structure.

Negli ultimi decenni, le tecnologie di somministrazione dei farmaci hanno guadagnato un'attenzione significativa nel campo farmaceutico, in quanto offrono vantaggi distinti rispetto alle formulazioni di farmaci convenzionali. La somministrazione convenzionale di farmaci soffre spesso di problemi quali la potenziale tossicità, la resistenza batterica e una farmacocinetica inadeguata. Per affrontare queste sfide, sono stati sviluppati dispositivi di somministrazione dei farmaci per ridurre gli effetti collaterali e migliorare il controllo del rilascio dei farmaci. Negli ultimi quindici anni è stata sviluppata una nuova classe di strutture non di equilibrio, nota come gel di emulsioni bicontinue interfacciali (bijels). Queste strutture sono stabilizzate all'interfaccia da nanoparticelle solide, formando una struttura porosa compenetrata di due fasi immiscibili, tipicamente una fase acquosa e una organica. Questa caratteristica unica consente il caricamento simultaneo e il rilascio controllato di farmaci sia idrofili che lipofili, rendendo i bijel un candidato interessante per la somministrazione di farmaci multi-target. In questo contesto, il presente lavoro di tesi si proponeva di identificare le condizioni ottimali per la produzione di un sistema simile al bijel e di studiarne il potenziale per applicazioni di rilascio di farmaci. Le nanoparticelle utilizzate per la sintesi sono state nanoparticelle magnetiche di Fe3O4, che non solo forniscono un elevato grado di stabilità alla struttura, ma danno anche la possibilità di muoverla mediante l'applicazione di un campo magnetico esterno. L'ε-caprolattone è stato scelto come monomero da polimerizzare durante la sintesi, insieme a etanolo e TBD, rispettivamente come iniziatore e catalizzatore. La prima fase di questo lavoro è stata dedicata all'identificazione del protocollo di sintesi ottimale per quanto riguarda la formulazione, la velocità e il tempo di miscelazione, lo stoccaggio, lo sformaggio e la modellazione. La struttura è stata profondamente caratterizzata per identificare le proprietà fisiche del bijel. Il meccanismo di rilascio è stato studiato caricando le strutture con un farmaco mimetico con determinate proprietà (cariche elettriche, ostacoli sterici) ed eseguendo test di rilascio in un mezzo che simulava le condizioni fisiologiche. I risultati hanno iv mostrato la percentuale di massa totale rilasciata nel tempo e la stabilità integrale delle strutture quando vengono caricate. Infine, nell'ambito degli sviluppi futuri, sono stati condotti alcuni studi preliminari per trovare una tecnica di analisi adeguata per i casi in cui due farmaci mimetici sono presenti nella stessa soluzione, in modo da poter effettuare test di rilascio in un'applicazione di codelivery, caricando nella struttura sia composti idrofobici che idrofili.

Magnetically driven bijel-like structures as controlled drug delivery systems

BARBOSA URREGO, NICOLÁS MAURICIO
2022/2023

Abstract

In recent decades, drug delivery technologies have gained significant attention in the pharmaceutical field as they offer distinct advantages over conventional drug formulations. Conventional drug administration often suffers from issues such as potential toxicity, bacterial resistance, and inadequate pharmacokinetics. To address these challenges, drug delivery devices have been developed to reduce side effects and improve drug release control. In the last fifteen years, a novel class of non-equilibrium structure, known as Bicontinuous Interfacially Jammed Emulsions gels (bijels) has been developed. These structures are stabilized at their interface by solid nanoparticles, forming a porous interpenetrating structure of two immiscible phases, typically an aqueous and an organic phase. This unique characteristic enables the simultaneous loading and controlled release of both hydrophilic and lipophilic drugs, making bijels an attractive candidate for multi-target drug delivery. In this context, this thesis work was aimed to identify the optimal conditions of the production of bijel-like system and study its potential for drug release applications. The nanoparticles used for the synthesis were Fe3O4 magnetic nanoparticles, that not only provides a high grade of stability for the structure but also gives the possibility of moving the structure by the application of an external magnetic field. ε-caprolactone was selected as the monomer to be polymerized during the synthesis, along with ethanol and TBD, as initiator and catalyst respectively. The first phase of this work was devoted to the identification of the optimal synthesis protocol regarding the formulation, mixing speed and time, storage, unmolding and shaping. The structure was deeply characterized to identify the, along with the physical properties of the bijel. The release mechanism was studied by loading the structures with mimetic drug with certain properties (electrical charges, steric hindrance) and performing release test in medium that simulated physiological conditions. Results showed the percentage of total mass released time and the integral stability of the structures when loaded. ii Finally, in the context of future developments, some preliminary studies were carried out to find a proper analysis technique for the cases in which two mimetic drugs are present in the same solution, so that release test can be carried out in a codelivery application, charging both hydrophobic and hydrophilic compounds into the structure.
LACROCE, ELISA
PIZZETTI, FABIO
ING - Scuola di Ingegneria Industriale e dell'Informazione
5-ott-2023
2022/2023
Negli ultimi decenni, le tecnologie di somministrazione dei farmaci hanno guadagnato un'attenzione significativa nel campo farmaceutico, in quanto offrono vantaggi distinti rispetto alle formulazioni di farmaci convenzionali. La somministrazione convenzionale di farmaci soffre spesso di problemi quali la potenziale tossicità, la resistenza batterica e una farmacocinetica inadeguata. Per affrontare queste sfide, sono stati sviluppati dispositivi di somministrazione dei farmaci per ridurre gli effetti collaterali e migliorare il controllo del rilascio dei farmaci. Negli ultimi quindici anni è stata sviluppata una nuova classe di strutture non di equilibrio, nota come gel di emulsioni bicontinue interfacciali (bijels). Queste strutture sono stabilizzate all'interfaccia da nanoparticelle solide, formando una struttura porosa compenetrata di due fasi immiscibili, tipicamente una fase acquosa e una organica. Questa caratteristica unica consente il caricamento simultaneo e il rilascio controllato di farmaci sia idrofili che lipofili, rendendo i bijel un candidato interessante per la somministrazione di farmaci multi-target. In questo contesto, il presente lavoro di tesi si proponeva di identificare le condizioni ottimali per la produzione di un sistema simile al bijel e di studiarne il potenziale per applicazioni di rilascio di farmaci. Le nanoparticelle utilizzate per la sintesi sono state nanoparticelle magnetiche di Fe3O4, che non solo forniscono un elevato grado di stabilità alla struttura, ma danno anche la possibilità di muoverla mediante l'applicazione di un campo magnetico esterno. L'ε-caprolattone è stato scelto come monomero da polimerizzare durante la sintesi, insieme a etanolo e TBD, rispettivamente come iniziatore e catalizzatore. La prima fase di questo lavoro è stata dedicata all'identificazione del protocollo di sintesi ottimale per quanto riguarda la formulazione, la velocità e il tempo di miscelazione, lo stoccaggio, lo sformaggio e la modellazione. La struttura è stata profondamente caratterizzata per identificare le proprietà fisiche del bijel. Il meccanismo di rilascio è stato studiato caricando le strutture con un farmaco mimetico con determinate proprietà (cariche elettriche, ostacoli sterici) ed eseguendo test di rilascio in un mezzo che simulava le condizioni fisiologiche. I risultati hanno iv mostrato la percentuale di massa totale rilasciata nel tempo e la stabilità integrale delle strutture quando vengono caricate. Infine, nell'ambito degli sviluppi futuri, sono stati condotti alcuni studi preliminari per trovare una tecnica di analisi adeguata per i casi in cui due farmaci mimetici sono presenti nella stessa soluzione, in modo da poter effettuare test di rilascio in un'applicazione di codelivery, caricando nella struttura sia composti idrofobici che idrofili.
File allegati
File Dimensione Formato  
Thesis Nicolás Barbosa.pdf

accessibile in internet solo dagli utenti autorizzati

Dimensione 4.33 MB
Formato Adobe PDF
4.33 MB Adobe PDF   Visualizza/Apri
Executive Summary Nicolás Barbosa.pdf

accessibile in internet solo dagli utenti autorizzati

Dimensione 861.94 kB
Formato Adobe PDF
861.94 kB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/209955