Surface acoustic wave (SAW) devices are versatile and cheap instruments suitable for a wide range of applications. Such devices exploit piezoelectric materials to transform electric signal into an elastic surface wave, that can be manipulated and filtered. Therefore, SAW devices are useful for filtering, sensing, actuation, signal control in telecommunications, biomedical and industrial applications, and even in quantum computing. Demand for SAW with better performance, lower cost and smaller dimensions is increasing in industry. In this thesis, the consolidated idea of SAW is reconsidered, trying to combine SAWs with topological metamaterials. The long-term aim is to create compact devices, exploiting the advantages of topologically protected modes. The focus of this thesis is on the individuation of a geometry suitable for a topologically protected mode. The proposed SAW device is theoretically based on the Su-Schrieffer-Heeger (SSH) model for topological insulators. According to SSH a defect within a periodic array of cells is potentially a location for a topologically protected mode, provided that the unit cell has certain dispersion properties. The real SAW device is composed by unit cells made of two resonators. A suitable positioning of unit cells creates an interface, materializing a preferential pathway for surface wave exciting the protected mode. As a result, the excitation is confined within the interface, with reduced reflections due to wave confinement and slow speed. Such a device have good performances in signal filtering (passband width of ≈ 1 MHz) and delaying (≈ 1/10 of wave speed).
I dispositivi basati su onde acustiche superficiali (Surface Acoustic Wave, SAW) sono strumenti economici e versatili, adatti per una vasta gamma di applicazioni. I dispositivi SAW utilizzano materiali piezoelettrici per convertire un segnale elettrico in un’onda elastica di superficie, che può essere manipolata e filtrata. Perciò, i dispositivi SAW sono utili per filtraggio, sensoristica, attuazione, controllo del segnale nelle telecomunicazioni, applicazioni biomediche ed industriali, e perfino nel quantum computing. La richiesta da parte dell’industria per dispositivi SAW con migliori prestazioni, minori costi e dimensioni ridotte è in crescita. In questa tesi, l’idea tradizionale di SAW è rielaborata, combinando la tecnologia SAW con i metamateriali topologici. L’obiettivo a lungo termine è di creare dispositivi compatti, utilizzando i vantaggi dei modi topologicamente protetti. Il focus di questa tesi è nell’individuazione e analisi di una geometria adatta ad ospitare un modo topologicamente protetto. Il dispositivo SAW proposto si basa sul modello di isolatori topologici Su-Schrieffer-Heeger (SSH). Secondo il modello SSH, un difetto in uno schieramento periodico di celle unitarie è potenzialmente adatto a ospitare un modo topologicamente protetto, a patto che la cella unitaria abbia particolari proprietà dispersive. Il dispositivo SAW reale è composto da celle unitarie costituite da due risonatori. Posizionando opportunamente le celle unitarie si crea un’interfaccia che materializza un percorso preferenziale per l’onda di superficie eccitante il modo protetto. Come risultato, l’eccitazione è confinata nell’interfaccia, con limitate riflessioni per merito del confinamento dell’onda e della ridotta velocità della stessa. Tale dispositivo ha ottimi risultati per il filtraggio (passband di ≈ 1 MHz) e il rallentamento del segnale (velocità dell’onda di ≈ 1/10).
Topological metamaterials for SAW devices
Panigati, Tommaso
2022/2023
Abstract
Surface acoustic wave (SAW) devices are versatile and cheap instruments suitable for a wide range of applications. Such devices exploit piezoelectric materials to transform electric signal into an elastic surface wave, that can be manipulated and filtered. Therefore, SAW devices are useful for filtering, sensing, actuation, signal control in telecommunications, biomedical and industrial applications, and even in quantum computing. Demand for SAW with better performance, lower cost and smaller dimensions is increasing in industry. In this thesis, the consolidated idea of SAW is reconsidered, trying to combine SAWs with topological metamaterials. The long-term aim is to create compact devices, exploiting the advantages of topologically protected modes. The focus of this thesis is on the individuation of a geometry suitable for a topologically protected mode. The proposed SAW device is theoretically based on the Su-Schrieffer-Heeger (SSH) model for topological insulators. According to SSH a defect within a periodic array of cells is potentially a location for a topologically protected mode, provided that the unit cell has certain dispersion properties. The real SAW device is composed by unit cells made of two resonators. A suitable positioning of unit cells creates an interface, materializing a preferential pathway for surface wave exciting the protected mode. As a result, the excitation is confined within the interface, with reduced reflections due to wave confinement and slow speed. Such a device have good performances in signal filtering (passband width of ≈ 1 MHz) and delaying (≈ 1/10 of wave speed).File | Dimensione | Formato | |
---|---|---|---|
Tesi_Panigati_Tommaso_2023_09_18.pdf
accessibile in internet per tutti
Dimensione
8.25 MB
Formato
Adobe PDF
|
8.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210007