Due to the limitations associated with 2D cultures, recent years have seen a strong growth in the development of organoids, 3D in vitro cultures capable of reproducing the morphology and functions of a tissue or organ. Self-assembling peptides (SAPs) represent an innovative class of biocompatible materials capable of forming hydrogels for 3D cell culture and regenerative medicine applications. One application of SAPs hydrogels involves the combined use of SAPs with neural stem cells (NSCs) for the formation of 3D cultures and bioprostheses in the treatment of spinal cord injuries. Due to the relatively low mechanical properties of SAPs, however, processing these materials without affecting the viability and differentiation of NSCs can be complicated. In this thesis work, we used dynamic culture techniques, low-power microwave irradiation and 3D bioprinting to process structures based on SAPs and NSCs, evaluating the in vitro biological response of NSCs subjected to these treatments. Cultures were analysed in terms of cell viability, differentiation and neuronal maturation by viability assays, histochemical and immunohistochemical analyses. The investigated approaches allow advantages in terms of the complexity of the neuronal networks, the maintenance of long-term 3D cultures and the processability of SAPs-based materials.
A causa dei limiti associati alle colture 2D, negli ultimi anni si sta assistendo ad una forte crescita nello sviluppo di organoidi, colture 3D in grado di riprodurre in vitro la morfologia e le funzioni di un tessuto o di un organo. I peptidi autoassemblanti (SAPs) rappresentano una classe di materiali biocompatibili innovativa capace di formare idrogeli adatti per la coltura 3D di cellule e per applicazioni di medicina rigenerativa. Una delle applicazioni degli idrogeli di SAPs prevede l’utilizzo combinato dei SAPs con cellule staminali neurali (NSCs) per la formazione di colture 3D e costrutti nella cura delle lesioni al midollo spinale. A causa delle proprietà meccaniche relativamente basse dei SAPs, tuttavia, modificare questi materiali senza ridurre vitalità e differenziamento delle NSCs può risultare complicato. In questo lavoro di tesi sono state utilizzate tecniche di coltura dinamica, irraggiamento con microonde a bassa potenza e 3D bioprinting per processare materiali a base di SAPs e NSCs, valutando la risposta biologica delle NSCs sottoposte a questi trattamenti. Le colture in vitro sono state analizzate dal punto di vista della vitalità, del differenziamento e della maturazione neuronale tramite saggi di vitalità, analisi istochimiche ed immunoistochimiche. Gli approcci sperimentali studiati hanno permesso di ottenere vantaggi dal punto della complessità dei network neuronali, del mantenimento delle colture 3D a lungo termine e della processabilità dei materiali a base di SAPs.
Biological characterisation of NSCs-SAPs 3D cultures: dynamic culture, low-power microwaves and 3D bioprinting techniques
Sambrotta, Manuel
2022/2023
Abstract
Due to the limitations associated with 2D cultures, recent years have seen a strong growth in the development of organoids, 3D in vitro cultures capable of reproducing the morphology and functions of a tissue or organ. Self-assembling peptides (SAPs) represent an innovative class of biocompatible materials capable of forming hydrogels for 3D cell culture and regenerative medicine applications. One application of SAPs hydrogels involves the combined use of SAPs with neural stem cells (NSCs) for the formation of 3D cultures and bioprostheses in the treatment of spinal cord injuries. Due to the relatively low mechanical properties of SAPs, however, processing these materials without affecting the viability and differentiation of NSCs can be complicated. In this thesis work, we used dynamic culture techniques, low-power microwave irradiation and 3D bioprinting to process structures based on SAPs and NSCs, evaluating the in vitro biological response of NSCs subjected to these treatments. Cultures were analysed in terms of cell viability, differentiation and neuronal maturation by viability assays, histochemical and immunohistochemical analyses. The investigated approaches allow advantages in terms of the complexity of the neuronal networks, the maintenance of long-term 3D cultures and the processability of SAPs-based materials.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Manuel_Sambrotta.pdf
non accessibile
Descrizione: Thesis
Dimensione
222.86 MB
Formato
Adobe PDF
|
222.86 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Manuel_Sambrotta.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
29.11 MB
Formato
Adobe PDF
|
29.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210141