This thesis evaluates the energetic and financial viability of an energy community (EC) providing an external electric vehicle (EVs) charging service to commuters working in its neighbourhood. An accurate methodology is followed: starting from gathering the available data, such as the solar irradiation pattern, and the generation of realistic data when real data are not available, such as the consumption profiles of buildings and electric vehicles generated by adapting preexisting models to the Italian context, a linear optimization model is presented. The objective of the model is the EC profit maximization, to be realized by optimal sizing of the amount of photovoltaic (PV) panels and of home storage capacity to install and by optimal energy exchanges between the different elements connected to the EC. The model is applied to a 13-buildings residential complex in the North-West of Milan, evaluating the expected benefits of the EC system implementation. Four technology scenarios are considered: only PVs, PVs and home storage, PVs and vehicle-to-everything (V2X) technology of EC members’ vehicles or PVs, home storage and V2X technology. The EC potential under two different energy prices and with different EV fleets composition, both in terms of number and vehicle models, is considered. PVs installation is found to be extremely convenient decreasing of the 70% the EC annual cash outflows and the 43% of the generated energy is self-consumed by the EC. The additional introduction of storage technologies (home storage and/or the EC member’s EVs battery) decreases of the 90% the EC annual cash outflows and increases at 70% the self-consumption when both home storage and V2X technologies are used. Abated CO2 emissions and payback times of the investment are evaluated and the profitability of the systems heavily depends on energy costs but always protects the EC against energy price fluctuations. The EC is confirmed to be a profitable system bringing benefits to all the actors interacting with it and, according to the foreseen increase in EVs adoption and the expected improvement in PVs, storage, and V2X technologies cost-efficiency, ECs will surely become strong and valuable allies in driving the transition towards a greener future.
Questa tesi valuta la fattibilità energetica e finanziaria di una comunità energetica (CE) che offre un servizio di ricarica per i veicoli elettrici (VE) dei pendolari che lavorano in zona. Viene presentata una accurata metodologia che parte dalla raccolta dei dati disponibili, come l’irradiazione solare sulla CE, e dalla generazione di dati realistici quando quelli reali non sono disponibili, come per i dati del consumo energetico di edifici e VE che vengono adattati al contesto italiano modificando modelli preesistenti. Viene presentato un modello di ottimizzazione lineare il cui obiettivo è massimizzare il profitto della CE ottimizzando il numero dei pannelli fotovoltaici (PV), la capacità di storage domestico da installare e gli scambi energetici tra tutti gli elementi collegati alla CE. Il modello è applicato a un complesso residenziale di 13 edifici nel nord-ovest di Milano, valutandone i costi e benefici. Vengono valutati quattro scenari tecnologici in cui la CE può rispettivamente: installare solo PV, installare PV e storage domestico, installare PV e utilizzare la tecnologia vehicle-to-everything (V2X) dei VE dei membri della CE, ed installare PV, storage domestico e utilizzare la tecnologia V2X. I benefici associati alla CE sono studiati con due diversi prezzi annuali dell’energia e diverse composizioni della flotte di VE sia in termini di numero che di modelli di VE. La sola installazione dei PV risulta estremamente conveniente, riducendo del 70% le spese annuali della CE e permettendo di autoconsumare il 43% dell’energia generata. L’aggiuntiva di tecnologie di stoccaggio dell’energia (storage e/o batterie dei VE dei membri della CE) permette di ridurre fino al 90% le spese annuali della CE e di aumentare l’energia autoconsumata fino al 70% nel caso in cui sono presenti entrambe le tecnologie di stoccaggio. Vengono studiate le emissioni di CO2 ed il tempo per ripagare l’investimento nelle varie casistiche. La redditività della CE risulta dipendere fortemente dal costo dell’energia, ma la CE risulta sempre utile per tutelarsi dalle fluttuazioni del mercato energetico e si conferma un sistema redditizio che porta benefici a tutti gli attori interagenti con lo stesso. Considerando il trend crescente di adozione di VE ed i futuri progressi in termini di efficienza e costo delle varie tecnologie, le CE diventeranno sicuramente preziosi alleati nella transizione verso un futuro più sostenibile.
Urban energy community and battery electric vehicles integration : an italian case
SCROFANI, SEBASTIANO
2022/2023
Abstract
This thesis evaluates the energetic and financial viability of an energy community (EC) providing an external electric vehicle (EVs) charging service to commuters working in its neighbourhood. An accurate methodology is followed: starting from gathering the available data, such as the solar irradiation pattern, and the generation of realistic data when real data are not available, such as the consumption profiles of buildings and electric vehicles generated by adapting preexisting models to the Italian context, a linear optimization model is presented. The objective of the model is the EC profit maximization, to be realized by optimal sizing of the amount of photovoltaic (PV) panels and of home storage capacity to install and by optimal energy exchanges between the different elements connected to the EC. The model is applied to a 13-buildings residential complex in the North-West of Milan, evaluating the expected benefits of the EC system implementation. Four technology scenarios are considered: only PVs, PVs and home storage, PVs and vehicle-to-everything (V2X) technology of EC members’ vehicles or PVs, home storage and V2X technology. The EC potential under two different energy prices and with different EV fleets composition, both in terms of number and vehicle models, is considered. PVs installation is found to be extremely convenient decreasing of the 70% the EC annual cash outflows and the 43% of the generated energy is self-consumed by the EC. The additional introduction of storage technologies (home storage and/or the EC member’s EVs battery) decreases of the 90% the EC annual cash outflows and increases at 70% the self-consumption when both home storage and V2X technologies are used. Abated CO2 emissions and payback times of the investment are evaluated and the profitability of the systems heavily depends on energy costs but always protects the EC against energy price fluctuations. The EC is confirmed to be a profitable system bringing benefits to all the actors interacting with it and, according to the foreseen increase in EVs adoption and the expected improvement in PVs, storage, and V2X technologies cost-efficiency, ECs will surely become strong and valuable allies in driving the transition towards a greener future.File | Dimensione | Formato | |
---|---|---|---|
2023_07_Scrofani_Tesi_01.pdf
Open Access dal 04/07/2024
Descrizione: tesi di laurea magistrale
Dimensione
13.57 MB
Formato
Adobe PDF
|
13.57 MB | Adobe PDF | Visualizza/Apri |
2023_07_Scrofani_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210159