The global pursuit of sustainable energy solutions has reached a critical juncture, as the need to address climate change and reduce dependence on fossil fuel resources becomes increasingly urgent. Fossil fuels, which have long powered the economies and societies, are now recognized as a primary contributor to greenhouse gas emissions and environmental degradation. As the world seeks to transition towards a low-carbon future, the exploration of innovative and alternative energy sources has taken center stage. Among these, H2 has emerged as a compelling contender, offering the potential to revolutionise the energy landscape and pave the way for a cleaner, more sustainable future. H2, a zero-carbon emission source, holds immense potential for utilization in the residential heating sector. This promising energy carrier can be harnessed to drive sustainable change in how global warming needs are met. It is true that while it can be a clean and renewable energy source, it also comes with some economical, safety and technical issues that needs to be addressed. Today, the production of H2 from renewable sources is still under development and not economically competitive with H2 produced from fossil fuels. Moreover, its storage and network distribution are risky because of H2 flammability and gaseous nature, which certainly increases a lot the costs. With a lack of infrastructure and high costs, H2 energy is not viable in its current state and requires further developments, provided by more financial and political support. By exploiting H2’s attributes, it is possible to imagine a future where homes are heated without contributing to carbon emissions, thereby mitigating the environmental impact associated with traditional heating methods. At this regard, the Thesis work is focused on H2 behaviour and characteristics as fuel in the gas condensing boilers, more precisely in the pre-mixed micro-perforated burners. Micro-perforated burners are combustion devices characterized by hundreds or thousands of little circular holes on its surface which are strategically arranged in order to ensure precise control and distribution of fuel and air during the combustion process. The work especially addresses two major technical challenges related to H2 utilization in micro-perforated burners: flashback and NOx emissions. The burning mixture is fed at 300 K and 1 atm, and the inlet conditions are determined by operative power output (P ) and dilution ratio (λ) or fuel equivalence ratio (Φ = 1/λ). Initially, a range of key parameters are investigated, by performing CFD numerical simulations, across varying compositions of H2 − CH4 − air mixtures, aiming to elucidate the potential impact of introducing H2 into the mixture on the combustion dynamics. Consequently, the work is mainly divided into two parts both based on a pure H2 − air mixture working on CFD numerical simulations. The first part is based on the study about the flashback phenomenon considering just a single H2 flame and then the second part takes care about two adjacent flames, far way from the burner’s edge, and the NOx emissions analysis is performed since they are detrimental to air quality and have adverse effects on both human health and the environment. Results by the first part showed that to avoid flashback phenomenon, and so to work in safe conditions, it is more convenient to employ small hole radius R, high operating power P and leaner conditions, corresponding to high dilution ratio λ. On the subject of NOx emissions, a noticeable trend emerges where these emissions increase as the value of λ decreases, while maintaining P at a constant level. Conversely, when λ is held steady and P is raised, a direct correlation becomes evident: higher power output leads to higher temperatures, subsequently amplifying the production of NOx emissions. Moreover, working with very diluted conditions allows to control and widely reduce the NOx concentrations to few ppm, whilst the well-known Thermal mechanism of NOx formation is not relevant due to the reduced flame temperatures.
La ricerca globale di soluzioni energetiche sostenibili ha raggiunto un punto di svolta, poiché affrontare i cambiamenti climatici e ridurre la dipendenza dai combustibili fossili diventa sempre più urgente. I combustibili fossili, che a lungo hanno dominato l’economia e la società, sono ora riconosciuti come uno dei principali responsabili delle emissioni di gas serra e del cambiamento climatico. La ricerca di fonti energetiche innovative e alternative ha ormai un ruolo centrale nel tentativo globale di passare ad un futuro a basse emissioni di carbonio. Tra queste, l’idrogeno sembra molto promettente nel rivoluzionare il panorama energetico e aprire la strada a un futuro più pulito e sostenibile. L’idrogeno, una fonte a zero emissioni di carbonio, ha un immenso potenziale di applicazione nel settore del riscaldamento domestico. Questo promettente vettore energetico può essere sfruttato per guidare un cambiamento sostenibile, soddisfacendo le esigenze legate al riscaldamento globale. È vero che, sebbene possa essere una fonte di energia pulita e rinnovabile, comporta anche alcuni problemi economici, di sicurezza e tecnici che devono essere affrontati. Oggi, la produzione di idrogeno da fonti rinnovabili è ancora in fase di sviluppo e non economicamente competitiva con idrogeno ottenuto da combustibili fossili. Inoltre, il suo stoccaggio e distribuzione in rete sono rischiosi a causa della sua infiammabilità e natura gassosa, il che sicuramente aumenta molto i costi. A causa della mancanza di infrastrutture e dei costi elevati, l’energia da idrogeno attualmente non è sostenibile e richiede ulteriori sviluppi, supportati da un maggiore sostegno finanziario e politico. Sfruttando le caratteristiche dell’idrogeno, è possibile immaginare un futuro in cui le case vengono riscaldate senza contribuire alle emissioni di carbonio, mitigando così l’impatto ambientale associato ai metodi di riscaldamento tradizionali. A questo proposito, il lavoro di Tesi è incentrato sul comportamento e sulle caratteristiche dell’idrogeno come combustibile nelle caldaie a condensazione, più precisamente nei bruciatori microforati premiscelati con fori circolari. Questi ultimi sono dispositivi di combustione specializzati caratterizzati da centinaia o migliaia di piccoli fori circolari sulla sua superficie, disposti strategicamente per garantire un controllo e una distribuzione precisi del combustibile e dell’aria durante il processo di combustione. Il lavoro tratta soprattutto due problematiche tecniche collegate all’utilizzo dell’idrogeno nei bruciatori microforati: il ritorno di fiamma e le emissioni di NOx. La miscela combustibile viene alimentata a 300 K e 1 atm, mentre le condizioni di ingresso sono determinate in base alla potenza operativa (P) e al rapporto di diluizione (λ) o al rapporto di equivalenza del combustibile (Φ = 1/λ). Inizialmente, una serie di parametri chiave viene studiata tramite simulazioni numeriche CFD, variando la composizione di miscele H2 − CH4 − aria, con l’obiettivo di chiarire il potenziale impatto dell’introduzione di H2 nella miscela sulla dinamica della combustione. Successivamente, il lavoro viene principalmente diviso in due parti, entrambe comprendenti simulazioni numeriche CFD basate su miscele H2-aria. La prima parte comprende uno studio sui fenomeni di ritorno di fiamma considerando una sola fiamma di H2, mentre la seconda parte si occupa di due fiamme adiacenti, lontane dal bordo del bruciatore, in cui viene eseguita l’analisi delle emissioni di NOx, poiché essi sono dannosi per la qualità dell’aria e hanno effetti negativi sia sulla salute umana che sull’ambiente. I risultati della prima parte hanno mostrato che per evitare fenomeni di ritorno di fiamma, e quindi lavorare in condizioni di sicurezza, è più conveniente impiegare fori di piccolo raggio (R), elevate potenze operative (P) e condizioni più diluite, corrispondenti ad un elevato rapporto di diluizione λ. Quanto emerge sulle emissioni di NOx è che queste aumentano al diminuire del valore di λ, pur mantenendo costante P. Al contrario, quando λ rimane costante e P aumenta, diventa evidente che una maggiore potenza porta a temperature più elevate, e quindi maggiore produzione di NOx. Inoltre, lavorare in condizioni molto diluite permette di controllare e ridurre ampiamente le concentrazioni di NOx a pochi ppm, mentre il noto meccanismo termico di formazione degli NOx non è rilevante a causa delle ridotte temperature di fiamma.
Numerical modeling of H2 addition in micro-perforated burners for domestic condensing boilers
FINCO, GIORGIA;CANOLA, ANNA
2022/2023
Abstract
The global pursuit of sustainable energy solutions has reached a critical juncture, as the need to address climate change and reduce dependence on fossil fuel resources becomes increasingly urgent. Fossil fuels, which have long powered the economies and societies, are now recognized as a primary contributor to greenhouse gas emissions and environmental degradation. As the world seeks to transition towards a low-carbon future, the exploration of innovative and alternative energy sources has taken center stage. Among these, H2 has emerged as a compelling contender, offering the potential to revolutionise the energy landscape and pave the way for a cleaner, more sustainable future. H2, a zero-carbon emission source, holds immense potential for utilization in the residential heating sector. This promising energy carrier can be harnessed to drive sustainable change in how global warming needs are met. It is true that while it can be a clean and renewable energy source, it also comes with some economical, safety and technical issues that needs to be addressed. Today, the production of H2 from renewable sources is still under development and not economically competitive with H2 produced from fossil fuels. Moreover, its storage and network distribution are risky because of H2 flammability and gaseous nature, which certainly increases a lot the costs. With a lack of infrastructure and high costs, H2 energy is not viable in its current state and requires further developments, provided by more financial and political support. By exploiting H2’s attributes, it is possible to imagine a future where homes are heated without contributing to carbon emissions, thereby mitigating the environmental impact associated with traditional heating methods. At this regard, the Thesis work is focused on H2 behaviour and characteristics as fuel in the gas condensing boilers, more precisely in the pre-mixed micro-perforated burners. Micro-perforated burners are combustion devices characterized by hundreds or thousands of little circular holes on its surface which are strategically arranged in order to ensure precise control and distribution of fuel and air during the combustion process. The work especially addresses two major technical challenges related to H2 utilization in micro-perforated burners: flashback and NOx emissions. The burning mixture is fed at 300 K and 1 atm, and the inlet conditions are determined by operative power output (P ) and dilution ratio (λ) or fuel equivalence ratio (Φ = 1/λ). Initially, a range of key parameters are investigated, by performing CFD numerical simulations, across varying compositions of H2 − CH4 − air mixtures, aiming to elucidate the potential impact of introducing H2 into the mixture on the combustion dynamics. Consequently, the work is mainly divided into two parts both based on a pure H2 − air mixture working on CFD numerical simulations. The first part is based on the study about the flashback phenomenon considering just a single H2 flame and then the second part takes care about two adjacent flames, far way from the burner’s edge, and the NOx emissions analysis is performed since they are detrimental to air quality and have adverse effects on both human health and the environment. Results by the first part showed that to avoid flashback phenomenon, and so to work in safe conditions, it is more convenient to employ small hole radius R, high operating power P and leaner conditions, corresponding to high dilution ratio λ. On the subject of NOx emissions, a noticeable trend emerges where these emissions increase as the value of λ decreases, while maintaining P at a constant level. Conversely, when λ is held steady and P is raised, a direct correlation becomes evident: higher power output leads to higher temperatures, subsequently amplifying the production of NOx emissions. Moreover, working with very diluted conditions allows to control and widely reduce the NOx concentrations to few ppm, whilst the well-known Thermal mechanism of NOx formation is not relevant due to the reduced flame temperatures.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis_Canola_Finco.pdf
non accessibile
Descrizione: Master Thesis
Dimensione
9.19 MB
Formato
Adobe PDF
|
9.19 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Canola_Finco.pdf
non accessibile
Descrizione: Executive summary
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210369