The rapid development of power electronics has led in a short time to the production of smaller components with higher power density. However, they have a major limitation, namely the waste heat dissipation, which compromises their reliability and miniaturisation. Thermal management is essential to enable further power increases and size reduction. Over the last four decades, Additive Manufacturing (AM) technologies have become increasingly important due to their intrinsic benefits concerning design freedom and the use of advanced materials. AM of highly thermally conductive materials has been evaluated to produce state-of-the-art heat exchangers (HXs). This thesis aims to design, simulate and test innovative compact heat exchangers for the thermal management of power electronics. The main objective is to compare two different cooling technologies and two different materials in terms of heat dissipation. The initial application is a Printed Circuit Board (PCB) with sixteen transistors (hotspots) generating approximately 250 W. The thesis involved the following steps: literature research, idea generation, concept definition, analytical model, numerical simulation, prototyping and testing. The literature research focused on state-of-the-art AM heat sinks for power electronics. Several concepts were proposed, but ultimately, the design of a Manifold Microchannel (MMC) prototype has shown the most promising results in thermally managing the PCB. This technology allows the achievement of high heat transfer coefficients while keeping pressure drops low. The design started from a simple analytical model and continued through numerical CFD simulations. An enhanced design was achieved through an iterative design process. Finally, the prototype was 3D printed and compared with the previously designed jet impingement solution through an in-depth experimental test campaign. The original contribution to scientific research involved the design of a compact 3D-printed MMC heat sink and its comparison with existing solutions. Thus, these compact high performance heat sinks were demonstrated to be promising solutions for the thermal management of the ever-increasing power density of power electronics.
Il rapido sviluppo dell’elettronica di potenza ha portato in breve tempo alla produzione di componenti più piccoli con una maggiore densità di potenza. Tuttavia, la generazione di calore è una notevole limitazione, che ne compromette l’affidabilità e compattezza. La gestione termica è essenziale per consentire un ulteriore aumento di potenza e una riduzione delle dimensioni. Negli ultimi quarant’anni, le tecnologie di fabbricazione additiva (AM) sono diventate sempre più importanti grazie ai loro vantaggi intrinseci relativi alla libertà di progettazione e all’uso di materiali avanzati. L’AM di materiali altamente termoconduttivi è stata valutata per produrre scambiatori di calore (HX). Questa tesi si propone di progettare, simulare e testare scambiatori di calore compatti innovativi per la gestione termica dell’elettronica di potenza. L’obiettivo principale è quello di confrontare due diverse tecnologie e due diversi materiali in termini di dissipazione del calore. L’applicazione iniziale è un circuito stampato (PCB) con sedici transistor (hotspot) che generano circa 250 W. Il progetto di tesi ha previsto le seguenti fasi: ricerca bibliografica, definizione del concetto, modello analitico e simulazione numerica, prototipazione, e test. La ricerca in letteratura si è concentrata sullo stato dell’arte dei dissipatori di calore AM per l’elettronica di potenza. Sono stati proposti diversi concetti, ma alla fine si è optato per la progettazione di una soluzione Manifold Microchannel (MMC) per gestire termicamente il PCB. Questa tecnologia consente di ottenere elevati coefficienti di trasferimento del calore mantenendo basse le perdite di carico. Il progetto è iniziato da un semplice modello analitico ed è proseguito con simulazioni numeriche CFD. Un design ottimale è stato ottenuto attraverso un processo di progettazione iterativa. Infine, il prototipo è stato stampato in 3D e confrontato con la soluzione di jet impingement precedentemente progettata attraverso una approfondita campagna sperimentale. Il contributo originale alla ricerca scientifica ha riguardato la progettazione di un dissipatore MMC compatto stampato in 3D e il suo confronto con le soluzioni esistenti. Questi dissipatori di calore compatti per alte prestazioni si sono rivelati soluzioni promettenti per la gestione termica della sempre più crescente densità di potenza dell’elettronica di potenza.
Realisation and validation of additively manufactured thermal management components for advanced automotive high-power electronics
Ferrari, Ruben
2022/2023
Abstract
The rapid development of power electronics has led in a short time to the production of smaller components with higher power density. However, they have a major limitation, namely the waste heat dissipation, which compromises their reliability and miniaturisation. Thermal management is essential to enable further power increases and size reduction. Over the last four decades, Additive Manufacturing (AM) technologies have become increasingly important due to their intrinsic benefits concerning design freedom and the use of advanced materials. AM of highly thermally conductive materials has been evaluated to produce state-of-the-art heat exchangers (HXs). This thesis aims to design, simulate and test innovative compact heat exchangers for the thermal management of power electronics. The main objective is to compare two different cooling technologies and two different materials in terms of heat dissipation. The initial application is a Printed Circuit Board (PCB) with sixteen transistors (hotspots) generating approximately 250 W. The thesis involved the following steps: literature research, idea generation, concept definition, analytical model, numerical simulation, prototyping and testing. The literature research focused on state-of-the-art AM heat sinks for power electronics. Several concepts were proposed, but ultimately, the design of a Manifold Microchannel (MMC) prototype has shown the most promising results in thermally managing the PCB. This technology allows the achievement of high heat transfer coefficients while keeping pressure drops low. The design started from a simple analytical model and continued through numerical CFD simulations. An enhanced design was achieved through an iterative design process. Finally, the prototype was 3D printed and compared with the previously designed jet impingement solution through an in-depth experimental test campaign. The original contribution to scientific research involved the design of a compact 3D-printed MMC heat sink and its comparison with existing solutions. Thus, these compact high performance heat sinks were demonstrated to be promising solutions for the thermal management of the ever-increasing power density of power electronics.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Ferrari_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
948.68 kB
Formato
Adobe PDF
|
948.68 kB | Adobe PDF | Visualizza/Apri |
2023_10_Ferrari_Tesi_01.pdf
non accessibile
Descrizione: Thesis
Dimensione
31.2 MB
Formato
Adobe PDF
|
31.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210405