Conventional systems for internalization and delivery of therapeutic agents are generally characterized by problems of systemic toxicity and repeated dosing. To achieve the most effective yet safe release possible, such systems must provide maximum spatiotemporal control of the entire mechanism, releasing their therapeutic agent at the desired target site and with kinetics as controlled as possible. The absence, even partial, of any of these requirements could render the entire process futile. For several years, hydrogels have constituted one of the most studied groups of biomaterials as carriers for local delivery of not only drugs, but still cells and especially gene delivery complexes. Indeed, high biocompatibility, versatile physicochemical properties of their water-rich structure, and adaptability to different synthesis methods are just some of the properties that make hydrogels suitable candidates for the latter purpose. However, very often, the lack of standardized methodologies to properly characterize the loading and release of transfectants within this class of materials poses significant difficulties in comparing the results of different experiments, while preventing accurate evaluation of the solutions used. To this end, concentric hydrogel spheres based on methacrylate gelatin (gelMa) and sodium alginate for the internalization and controlled release of transfectants were engineered and fabricated by electrospray in this thesis paper. After a first careful step of homogenizing their morphology, we proceeded with the analysis of the degradation of the spheres in an aqueous environment and then, only after that, with the optimization of both the loading protocol and the release step of fluorescent nanoparticles (i.e., Red Fluorescent Aminated PS Latex). The latter, in the present context, would simulate transfection complexes in the context of potential gene delivery therapy. The sustained release profile over time, such as to ensure internalization of the nanoparticles by cells without cytotoxic effects, confirms the practical applicability of hydrogels as systems for targeted and sustained delivery of transfectant agents over time.
I sistemi convenzionali per l’internalizzazione e la somministrazione di agenti terapeutici sono generalmente caratterizzati da problemi di tossicità sistemica e di dosaggio ripetuto. Per ottenere un rilascio il più possibile efficace e al contempo sicuro, tali sistemi devono garantire il massimo controllo spazio-temporale dell’intero meccanismo, liberando il proprio agente terapeutico nel sito di destinazione desiderato e con una cinetica il più possibile controllata. L’assenza, anche solo parziale, di uno di questi requisiti, potrebbe rendere vano l'intero processo. Da diversi anni, gli idrogeli costituiscono uno dei gruppi di biomateriali più studiati come carrier per la somministrazione locale non solo di farmaci, ma ancora di cellule e soprattutto di complessi per gene delivery. Infatti, l’elevata biocompatibilità, le proprietà fisico-chimiche versatili della loro struttura ricca di acqua e l’adattabilità a diversi metodi di sintesi sono solo alcune delle proprietà che fanno degli idrogeli dei candidati adatti a quest’ultimo scopo. Tuttavia, molto spesso, la mancanza di metodologie standardizzate per caratterizzare correttamente il caricamento e il rilascio di trasfettanti all’interno di questa classe di materiali pone notevoli difficoltà nel confrontare i risultati di diverse sperimentazioni, impedendo al contempo una valutazione accurata delle soluzioni impiegate. A tale scopo, nel presente elaborato di tesi si sono ingegnerizzate e realizzate per elettrospray delle sfere di idrogelo concentriche a base di gelatina metacrilata (gelMa) e alginato di sodio per l’internalizzazione e il rilascio controllato di trasfettanti. Dopo una prima attenta fase di omogeneizzazione della loro morfologia, si è proceduto con l’analisi della degradazione delle sfere in ambiente acquoso e quindi, solo dopo, con l’ottimizzazione sia del protocollo di caricamento che della fase di rilascio di nanoparticelle fluorescenti (i.e. Red Fluorescent Aminated PS Latex). Quest’ultime, nel contesto in esame, simulerebbero dei complessi di trasfezione nel contesto di una potenziale terapia di gene delivery. Il profilo di rilascio sostenuto nel tempo, tale da garantire l’internalizzazione delle nanoparticelle da parte delle cellule senza effetti citotossici, conferma la concreta applicabilità degli idrogeli come sistemi per la somministrazione mirata e sostenuta nel tempo di agenti trasfettanti.
Rilascio prolungato di trasfettanti da sfere di idrogelo
BREMBILLA, NICCOLO';Cattaneo, Elias
2022/2023
Abstract
Conventional systems for internalization and delivery of therapeutic agents are generally characterized by problems of systemic toxicity and repeated dosing. To achieve the most effective yet safe release possible, such systems must provide maximum spatiotemporal control of the entire mechanism, releasing their therapeutic agent at the desired target site and with kinetics as controlled as possible. The absence, even partial, of any of these requirements could render the entire process futile. For several years, hydrogels have constituted one of the most studied groups of biomaterials as carriers for local delivery of not only drugs, but still cells and especially gene delivery complexes. Indeed, high biocompatibility, versatile physicochemical properties of their water-rich structure, and adaptability to different synthesis methods are just some of the properties that make hydrogels suitable candidates for the latter purpose. However, very often, the lack of standardized methodologies to properly characterize the loading and release of transfectants within this class of materials poses significant difficulties in comparing the results of different experiments, while preventing accurate evaluation of the solutions used. To this end, concentric hydrogel spheres based on methacrylate gelatin (gelMa) and sodium alginate for the internalization and controlled release of transfectants were engineered and fabricated by electrospray in this thesis paper. After a first careful step of homogenizing their morphology, we proceeded with the analysis of the degradation of the spheres in an aqueous environment and then, only after that, with the optimization of both the loading protocol and the release step of fluorescent nanoparticles (i.e., Red Fluorescent Aminated PS Latex). The latter, in the present context, would simulate transfection complexes in the context of potential gene delivery therapy. The sustained release profile over time, such as to ensure internalization of the nanoparticles by cells without cytotoxic effects, confirms the practical applicability of hydrogels as systems for targeted and sustained delivery of transfectant agents over time.| File | Dimensione | Formato | |
|---|---|---|---|
|
2023_07_Brembilla_Cattaneo_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
|
2023_07_Brembilla_Cattaneo_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
815 kB
Formato
Adobe PDF
|
815 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210441