The modern world functions more and more off of faster data rates and thus, higher frequency signals. These signals are increasingly susceptible to obstacles and absorptive materials. Repeater antennas are power hungry and must receive and then send information. This paper wishes to address the potential of Intelligent Reflective Surfaces (IRS) for mitigating or working with these problems. The thesis covers different geometries that could work based on the utilization of a material Barium Strontium Titanate (BST) that is capable of altering its ϵr when an electric field is applied to it. The cells used include square patches with square rings, circular rings with gaps, circumscribed circular rings, multiple patches, and square rings with gaps. Design considerations and simulations of each are done focused at frequencies near 50GHz for comparison between each other. The results show that BST is indeed capable of changing the phase of the incident signals. Additionally, the patch centric cells do not appear to produce as large a phase variation as the ring centric cells. Circular rings produced the largest phase variation and square rings offer a solid middle-ground. Considerations for other variables like gap sizes, ring widths, and cell size are also addressed. Showing that the square cells benefit from increased gaps and the circular cells are hindered by it. The width of the rings is minimally impactful besides some additional reflection loss and frequency shifting. Higher resonant frequencies appear to produce even higher sensitivities to the same variation in ϵr.

Il mondo moderno funziona con sempre più elevate velocità di trasmissione dati e per garantire la banda tende a usare frequenze sempre più elevate. Tali frequenze sono via via più sensibili alla presenza di ostacoli e all'assorbimento dei materiali. I ripetitori a loro volta richiedono potenza per amplificare il segnale. Il presente lavoro studia il potenziale delle superfici riflettenti intelligenti (IRS) per mitigare le problematiche delle moderne comunicazioni. La tesi studia diverse geometrie che funzionano sulla base di un materiale tunabile (BST) che è capace di variare la permittività relativa in funzione di un campo elettrico statico applicato. La cella usata per tali superifci include patch quadrati, anelli quadrati e circolari, gaps, anelli concentrici, patch multipli e anelli quadrati con gap. Considerazioni di progetto e simulazioni per ciscuna geometria sono state eseguite attonro a 50 GHz, in modo da confrontare le diverse implementazioni. I risultati mostrano che il materiale BST è ni effetti capace di variare la fase del segnale riflesso. SI mostra che il patch centrato nella cella non produce una variazione di fase grande come l'anello centrato. Gli anelli centrati producono la massima escursione di fase tra le geometrie considerate e i patch offrono prestazioni che sono una via di mezzo tra le diverse geometrie. Altre variabili, quali dimensione del gap, larhezza degli anelli e dimensioni della cellasono state anche considerate. Si mostra che il patch quadrato beneficia di un aumento del gap, mentre l'anello si comporta all'opposto. La larghezza dell'anello ha un impatto minimo, a parte piccole variazioni della risonanza.

Intelligent Reflecting Surfaces with BST Control

WISE, RYAN RICHARD
2022/2023

Abstract

The modern world functions more and more off of faster data rates and thus, higher frequency signals. These signals are increasingly susceptible to obstacles and absorptive materials. Repeater antennas are power hungry and must receive and then send information. This paper wishes to address the potential of Intelligent Reflective Surfaces (IRS) for mitigating or working with these problems. The thesis covers different geometries that could work based on the utilization of a material Barium Strontium Titanate (BST) that is capable of altering its ϵr when an electric field is applied to it. The cells used include square patches with square rings, circular rings with gaps, circumscribed circular rings, multiple patches, and square rings with gaps. Design considerations and simulations of each are done focused at frequencies near 50GHz for comparison between each other. The results show that BST is indeed capable of changing the phase of the incident signals. Additionally, the patch centric cells do not appear to produce as large a phase variation as the ring centric cells. Circular rings produced the largest phase variation and square rings offer a solid middle-ground. Considerations for other variables like gap sizes, ring widths, and cell size are also addressed. Showing that the square cells benefit from increased gaps and the circular cells are hindered by it. The width of the rings is minimally impactful besides some additional reflection loss and frequency shifting. Higher resonant frequencies appear to produce even higher sensitivities to the same variation in ϵr.
ING - Scuola di Ingegneria Industriale e dell'Informazione
5-ott-2023
2022/2023
Il mondo moderno funziona con sempre più elevate velocità di trasmissione dati e per garantire la banda tende a usare frequenze sempre più elevate. Tali frequenze sono via via più sensibili alla presenza di ostacoli e all'assorbimento dei materiali. I ripetitori a loro volta richiedono potenza per amplificare il segnale. Il presente lavoro studia il potenziale delle superfici riflettenti intelligenti (IRS) per mitigare le problematiche delle moderne comunicazioni. La tesi studia diverse geometrie che funzionano sulla base di un materiale tunabile (BST) che è capace di variare la permittività relativa in funzione di un campo elettrico statico applicato. La cella usata per tali superifci include patch quadrati, anelli quadrati e circolari, gaps, anelli concentrici, patch multipli e anelli quadrati con gap. Considerazioni di progetto e simulazioni per ciscuna geometria sono state eseguite attonro a 50 GHz, in modo da confrontare le diverse implementazioni. I risultati mostrano che il materiale BST è ni effetti capace di variare la fase del segnale riflesso. SI mostra che il patch centrato nella cella non produce una variazione di fase grande come l'anello centrato. Gli anelli centrati producono la massima escursione di fase tra le geometrie considerate e i patch offrono prestazioni che sono una via di mezzo tra le diverse geometrie. Altre variabili, quali dimensione del gap, larhezza degli anelli e dimensioni della cellasono state anche considerate. Si mostra che il patch quadrato beneficia di un aumento del gap, mentre l'anello si comporta all'opposto. La larghezza dell'anello ha un impatto minimo, a parte piccole variazioni della risonanza.
File allegati
File Dimensione Formato  
IntelligentReflectingSurfaceswBSTcontrol_thesis.pdf

accessibile in internet per tutti a partire dal 12/09/2026

Descrizione: Thesis submittal
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/210443