The purpose of the present Thesis work is to realize a pump and probe setup for the study of the thermal lensing effect. Thermal lensing (TL) is a phenomenon that occurs when a material absorbs part of the energy of an incident laser beam; the temperature rise in the medium causes a change in its local refractive index, therefore the laser is perturbed in its propagation. Previous studies of this self-defocusing effect on the absorbed beam have been conducted with a single beam setup, through which it was possible to determine the thermo-optical properties of the lensing material. I have integrated the existing experimental apparatus with the introduction of an additional laser beam, which is the new probe for the thermal lens. Probing the TL effect with a laser other than the absorbed one has several advantages, one above all the possibility to change in time the intensity of the heating laser. However, this kind of setup requires the formulation of new theoretical tools, which allows for the numerical evaluation of the TL effect with a generic beam modulation. Another challenge for the adoption of a dual beam scheme concerns the measurement of TL in complex fluids. In this kind of fluids, the mass transport caused by an external thermal gradient, known as Soret effect in multicomponent fluids or thermophoresis in colloids, causes an additional contribution to the lensing effect, which needs to be considered together with the purely thermal one. Taking as a reference the already known TL models, I have derived the perturbative effect on the probe beam propagation analytically. This analytical result is validated by means of a numerical solution of a non-approximated TL theory, including the Soret effect, and it is successfully applied to the measurements performed with the new experimental setup. Finally, with the dual beam apparatus it has been possible to measure the effect of the thermal lens when the pump beam is turned off. Therefore, performing this “power step” measurements on a thermoresponsive hydrogel (Mebiol®), I have verified that the thermal response in a gel can not be predicted with the available TL models. In this way the pump and probe scheme turns out to be a suitable setup for the investigation of soft solids.
In questo lavoro di Tesi, mi sono occupato della realizzazione di un apparato pump and probe per lo studio del fenomeno di lente termica. Quando un materiale assorbe parte della radiazione di un fascio laser, la sua temperatura e quindi il suo indice di rifrazione variano localmente, perturbando la propagazione del laser stesso. Studi svolti in precedenza riguardanti il fenomeno di self-defocusing, sono stati condotti tramite un apparato single beam, con il quale è possibile determinare le proprietà termo-ottiche di un campione assorbente. In questa sede, ho aggiornato il preesistente apparato aggiungendo un nuovo laser, la cui radiazione non viene assorbita, in modo da studiare gli effetti di lente termica indipendentemente da ciò che l’ha causata. Tra i vantaggi di un apparato dual beam c’è quello di poter modulare il laser di pompa, in modo da stimolare un materiale variando nel tempo la sorgente di calore al suo interno. Questo tipo di applicazione richiede nuovi strumenti teorici, che permettono di prevedere numericamente gli effetti di lente termica con una generica modulazione del laser assorbito. Un’ulteriore complicazione riguarda l’applicazione dei metodi di lente termica in fluidi complessi. In questo tipo di composti, la diffusione di massa indotta da un gradiente termico, ovvero l’effetto Soret in fluidi multicomponente o termoforesi nei colloidi, contribuisce al profilo di indice di rifrazione con un effetto di lente che deve essere considerato congiuntamente a quello termico. Prendendo come riferimento i modelli di lente termica già esistenti, ho formulato un’equazione che potesse comprendere e prevedere il contributo termoforetico in un segnale proveniente da un apparato dual beam. Questo risultato analitico è stato verificato con metodi numerici e applicato con successo in misure sperimentali effettuate con il nuovo apparato. Infine, ho studiato gli effetti di lente termica una volta spento il laser di pompa; prendendo in esame un idrogel termoresponsivo (Mebiol®), è stato possibile verificare che la risposta di un gel ad un gradiente termico non può essere predetta utilizzando i modelli di lente termica disponibili. In questo modo, risulta chiaro come un apparato dual beam di lente termica sia ideale per indagare le proprietà dei solidi soffici.
Dual beam setup for the measurement of thermal lensing in complex fluids
Bessega, Matteo
2022/2023
Abstract
The purpose of the present Thesis work is to realize a pump and probe setup for the study of the thermal lensing effect. Thermal lensing (TL) is a phenomenon that occurs when a material absorbs part of the energy of an incident laser beam; the temperature rise in the medium causes a change in its local refractive index, therefore the laser is perturbed in its propagation. Previous studies of this self-defocusing effect on the absorbed beam have been conducted with a single beam setup, through which it was possible to determine the thermo-optical properties of the lensing material. I have integrated the existing experimental apparatus with the introduction of an additional laser beam, which is the new probe for the thermal lens. Probing the TL effect with a laser other than the absorbed one has several advantages, one above all the possibility to change in time the intensity of the heating laser. However, this kind of setup requires the formulation of new theoretical tools, which allows for the numerical evaluation of the TL effect with a generic beam modulation. Another challenge for the adoption of a dual beam scheme concerns the measurement of TL in complex fluids. In this kind of fluids, the mass transport caused by an external thermal gradient, known as Soret effect in multicomponent fluids or thermophoresis in colloids, causes an additional contribution to the lensing effect, which needs to be considered together with the purely thermal one. Taking as a reference the already known TL models, I have derived the perturbative effect on the probe beam propagation analytically. This analytical result is validated by means of a numerical solution of a non-approximated TL theory, including the Soret effect, and it is successfully applied to the measurements performed with the new experimental setup. Finally, with the dual beam apparatus it has been possible to measure the effect of the thermal lens when the pump beam is turned off. Therefore, performing this “power step” measurements on a thermoresponsive hydrogel (Mebiol®), I have verified that the thermal response in a gel can not be predicted with the available TL models. In this way the pump and probe scheme turns out to be a suitable setup for the investigation of soft solids.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Bessega_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
14.57 MB
Formato
Adobe PDF
|
14.57 MB | Adobe PDF | Visualizza/Apri |
2023_10_Bessega_Executive_Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210557