The aim of this study, carried out at the Max Planck Institute for Solid State Research of Stuttgart, is to analyze the compatibility of the excitonic insulator mechanism as a possible origin of the 2x2x2 charge density wave observed in TiSe2, whose origin is still hardly discussed. The nature of TiSe2 is still debated between a semiconductor and a semimetal because the top of the valence band and the bottom of the conduction band are really close to each other in energy. This makes hard to distinguish between a very small gap (semiconductor) and a very small overlap (semimetal). Moreover TiSe2 undergoes a reconstruction of the lattice at low temperature. These two features make TiSe2 a good candidate to exhibit an excitonic insulator phase. The analysis of the band structure of TiSe2 also shows a consistency with the excitonic insulator mechanism. The compatibility of the excitonic insulator mechanism as the origin of the charge density wave is further studied by observing the behaviour of the transition temperature of the phenomenon when biaxial strain is induced in a TiSe2 film. This behaviour is studied by means of the analysis of resistivity measurements and Raman spectra. The strain is shown to be effectively induced in the TiSe2 film and increased with decreasing thickness of the film. The transition temperature seems to increase under tensile strain and decrease under compressive strain. This behaviour is consistent with a semimetal picture. If the semimetallic nature of TiSe2 is accepted, which is the most common case in the literature, our results show that the excitonic insulator mechanism is consistent with the experimental observations. Therefore the origin of the charge density wave in TiSe2 is at least compatible with the excitonic insulator mechanism.
Lo scopo di questo lavoro, svolto al Max Planck Institute for Solid State Research di Stoccarda, è di analizzare la compatibilità dell’isolante eccitonico come possibile meccanismo all’origine dell’onda di densità di carica 2x2x2 che si osserva in TiSe2, la cui origine è ancora ampiamente discussa. La natura di TiSe2 è ancora incerta, tra un semiconduttore e un semimetallo, a causa del fatto che la parte superiore della banda di valenza e la parte inferiore della banda di conduzione sono molto vicine tra loro in energia. Questo rende complesso distinguere tra un gap di energia molto piccolo (semiconduttore) e una sovrapposizione molto piccola delle bande (semimetallo). Inoltre TiSe2 subisce una ricostruzione del reticolo cristallino a bassa temperatura. Queste due caratteristiche rendono TiSe2 un buon candidato a mostrare la fase di isolante eccitonico. Anche l’analisi della struttura a bande di TiSe2 è coerente con il meccanismo dell’isolante eccitonico. La compatibilità dell’isolante eccitonico come meccanismo all’origine dell’onda di densità di carica è ulteriormente studiata osservando l’andamento della temperatura di transizione del fenomeno quando un campione sottile di TiSe2 è sottoposto ad una deformazione biassiale. Questo andamento è studiato tramite l’analisi di misure di resistività e spettri Raman. La deformazione viene indotta efficientemente nel campione sottile di TiSe2, e aumenta al diminuire dello spessore del campione. La temperatura di transizione sembra aumentare con una deformazione di trazione, e diminuire con una deformazione di compressione. Questo andamento è coerente con un semimetallo. Se la natura semimetallica di TiSe2 è accettata, che è il caso più comune in letteratura, i nostri risultati mostrano che il meccanismo dell’isolante eccitonico è coerente con le osservazioni sperimentali. Di conseguenza l’origine dell’onda di densità di carica in TiSe2 è quanto meno compatibile con il meccanismo dell’isolante eccitonico.
TiSe2 under biaxial strain: exploring the excitonic insulator state as the possible origin of the charge density wave
COCUZZA, GIORGIO
2022/2023
Abstract
The aim of this study, carried out at the Max Planck Institute for Solid State Research of Stuttgart, is to analyze the compatibility of the excitonic insulator mechanism as a possible origin of the 2x2x2 charge density wave observed in TiSe2, whose origin is still hardly discussed. The nature of TiSe2 is still debated between a semiconductor and a semimetal because the top of the valence band and the bottom of the conduction band are really close to each other in energy. This makes hard to distinguish between a very small gap (semiconductor) and a very small overlap (semimetal). Moreover TiSe2 undergoes a reconstruction of the lattice at low temperature. These two features make TiSe2 a good candidate to exhibit an excitonic insulator phase. The analysis of the band structure of TiSe2 also shows a consistency with the excitonic insulator mechanism. The compatibility of the excitonic insulator mechanism as the origin of the charge density wave is further studied by observing the behaviour of the transition temperature of the phenomenon when biaxial strain is induced in a TiSe2 film. This behaviour is studied by means of the analysis of resistivity measurements and Raman spectra. The strain is shown to be effectively induced in the TiSe2 film and increased with decreasing thickness of the film. The transition temperature seems to increase under tensile strain and decrease under compressive strain. This behaviour is consistent with a semimetal picture. If the semimetallic nature of TiSe2 is accepted, which is the most common case in the literature, our results show that the excitonic insulator mechanism is consistent with the experimental observations. Therefore the origin of the charge density wave in TiSe2 is at least compatible with the excitonic insulator mechanism.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Cocuzza_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary of the Thesis
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
2023_10_Cocuzza_01.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
47.12 MB
Formato
Adobe PDF
|
47.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210566