Supra-molecular materials are composed of spontaneous self-assembly of monomers, the building blocks. Among molecules able to form these structures, peptides are particularly promising, thanks to their biocompatibility, low cytotoxicity, biodegradability, and easy synthesis. Starting from assembling sequences derived from natural protein, numerous molecules are engineered to imitate their behaviour. From spontaneous peptides self-assembly, structures with different dimensions and shapes, exploitable in various biomedical applications, are formed. In this work, IKVAV-derived peptides assembly is analysed in response to pH variations. pH sensitive molecules are obtained from IKVAV by introducing the residue histidine varying its positions inside the sequence. Indeed, histidine contains in its side chain the imidazole ring, that is protonated at pH lower than 6,04 and neutral at pH higher than 6,04. Using the software GROMACS, molecular dynamic simulations are performed on systems containing 60 identical IKVAV-derived molecules; each peptide is simulated both with charged and neutral histidine. From the results the AP values (aggregation propensity) are calculated to determine the tendency of a peptide to aggregate: peptides self-assemble in both pH conditions, showing higher AP values when the imidazole ring is neutral. Four among the analysed in silico peptides, are synthetised in vitro. Their aggregation ability is measured using the DLS analysis in H2O at pH around 5,5, and in NaHCO3, at pH around 7,5: peptides tend to assemble only in H2O, with charged histidine. The results also demonstrated that the present of different anions in the samples can modify the self-assembly: in presence of TFA- the forming structures are more stable, while with Cl-, the aggregates tend to collapse over time; this is also confirmed by the images obtained with SEM. A further in silico analysis is performed to evaluate the reliability of the used computational method: the comparison between the AP values of 150 self-assembling peptides and those of 150 no aggregating random sequences, showed that this parameter is not reliable to distinguish the two different groups. So, the performed method is not yet providing accurate results in silico. That’s why the in silico and in vitro research findings don’t match.
I materiali sopra-molecolari sono costituiti dall’aggregazione spontanea di monomeri, detti building blocks. Tra le molecole in grado di formare queste strutture, risultano particolarmente promettenti i peptidi, i quali presentano biocompatibilità, bassa citotossicità e biodegradabilità, oltre che facilità di sintesi. A partire dalle sequenze aggreganti derivate dalle proteine naturali, sono state ingegnerizzate numerose molecole in grado di imitarne il comportamento. Dall’auto-aggregazione spontanea dei peptidi si ottengono strutture con dimensioni e morfologie differenti che possono trovare applicazione in vari campi biomedici. In questo studio viene analizzato l’auto-assemblamento di peptidi derivati dall’IKVAV in risposta a variazioni di pH. Molecole pH sensibili sono ottenute dall’IKVAV tramite l’introduzione del residuo istidina in diverse posizioni nella sequenza. L’istidina infatti, presenta nella catena laterale un anello imidazolico protonato a pH minori di 6,04 e neutro a pH maggiori di 6,04. Tramite il software GROMACS, simulazioni di dinamica molecolare sono svolte su sistemi contenenti 60 peptidi identici derivati dall’IKVAV; ogni peptide è simulato sia con istidina carica che neutra. Dai risultati ottenuti, sono calcolati i valori di AP (propensione all’aggregazione) per determinare la tendenza dei peptidi ad aggregare: i peptidi auto-assemblano in entrambe le condizioni di pH, mostrando valori di AP maggiori quando l’anello imidazolico è neutro. Quattro dei peptidi analizzati in silico sono stati sintetizzati in vitro. La loro capacità di aggregare è valutata tramite l’analisi DLS sia in H2O a pH intorno a 5,5, sia in NaHCO3 a pH intorno a 7,5: i peptidi aggregano solo in H2O, con istidina carica. I risultati hanno anche dimostrato che la presenza di anioni differenti nei campioni può modificare l’auto-assemblamento: in presenza di TFA- le strutture formate sono più stabili, mentre con Cl- gli aggregati tendono a collassare nel tempo; ciò è confermato anche dalle immagini ottenute con la SEM. Un’ulteriore analisi in silico è stata svolta per valutare l’affidabilità del metodo computazionale utilizzato: confrontando i valori di AP di 150 peptidi aggreganti con quelli di 150 sequenze random non auto-assemblanti, è emerso che questo parametro non è in grado di distinguere con accuratezza i due diversi gruppi. Per cui, il metodo utilizzato non permette ancora di ottenere risultati accurati in silico. Questo spiega perché gli esiti della ricerca in silico e in vitro non coincidono.
Controlling peptides self-assembly through pH variations: in silico and in vitro analysis of IKVAV-derived peptides
Ascagni, Allegra
2022/2023
Abstract
Supra-molecular materials are composed of spontaneous self-assembly of monomers, the building blocks. Among molecules able to form these structures, peptides are particularly promising, thanks to their biocompatibility, low cytotoxicity, biodegradability, and easy synthesis. Starting from assembling sequences derived from natural protein, numerous molecules are engineered to imitate their behaviour. From spontaneous peptides self-assembly, structures with different dimensions and shapes, exploitable in various biomedical applications, are formed. In this work, IKVAV-derived peptides assembly is analysed in response to pH variations. pH sensitive molecules are obtained from IKVAV by introducing the residue histidine varying its positions inside the sequence. Indeed, histidine contains in its side chain the imidazole ring, that is protonated at pH lower than 6,04 and neutral at pH higher than 6,04. Using the software GROMACS, molecular dynamic simulations are performed on systems containing 60 identical IKVAV-derived molecules; each peptide is simulated both with charged and neutral histidine. From the results the AP values (aggregation propensity) are calculated to determine the tendency of a peptide to aggregate: peptides self-assemble in both pH conditions, showing higher AP values when the imidazole ring is neutral. Four among the analysed in silico peptides, are synthetised in vitro. Their aggregation ability is measured using the DLS analysis in H2O at pH around 5,5, and in NaHCO3, at pH around 7,5: peptides tend to assemble only in H2O, with charged histidine. The results also demonstrated that the present of different anions in the samples can modify the self-assembly: in presence of TFA- the forming structures are more stable, while with Cl-, the aggregates tend to collapse over time; this is also confirmed by the images obtained with SEM. A further in silico analysis is performed to evaluate the reliability of the used computational method: the comparison between the AP values of 150 self-assembling peptides and those of 150 no aggregating random sequences, showed that this parameter is not reliable to distinguish the two different groups. So, the performed method is not yet providing accurate results in silico. That’s why the in silico and in vitro research findings don’t match.File | Dimensione | Formato | |
---|---|---|---|
Ascagni_Allegra_Tesi.pdf
Open Access dal 19/09/2024
Descrizione: Tesi Allegra Ascagni
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri |
Ascagni_Allegra_ExecutiveSummary.pdf
Open Access dal 19/09/2024
Descrizione: Executive Summary Allegra Ascagni
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210745