This thesis primarily focuses on the numerical simulation of a double-ended tuning fork (DETF) utilized in a resonant MEMS accelerometer. The investigation centers on three damping sources: thermoelastic damping, anchor losses, and fluid damping. The computational tool employed in this study is COMSOL Multiphysics®. The theoretical foundations of the numerical models for each damping source are explored and validated. The findings indicate that COMSOL effectively computes thermoelastic damping and anchor losses. Furthermore, the impact of geometric factors on these two damping sources in DETF resonators is examined. However, the results obtained for fluid damping in a comb-drive DETF resonator using COMSOL are deemed unreliable. The reasons behind this discrepancy are identified, and the issue is addressed by introducing the boundary integral equation (BIE) method as an alternative approach. Additionally, the thesis investigates the influence of geometric nonlinearity, focusing on the ’hard spring’ effect and on the sensitivity to input acceleration.
Questa tesi si concentra principalmente sulla simulazione numerica di una ”doubleended tuning fork” (DETF) utilizzata in un accelerometro MEMS risonante. L’indagine si focalizza su tre fonti di smorzamento: lo smorzamento termoelastico, le perdite agli ancoraggi e lo smorzamento fluido. Lo strumento computazionale impiegato nello studio `e COMSOL Multiphysics. Vengono esplorate e validate le basi teoriche dei modelli numerici per ciascuna delle fonti di smorzamento. I risultati indicano che COMSOL calcola efficacemente lo smorzamento termoelastico e le perdite agli ancoraggi. Inoltre, viene analizzato l’impatto dei fattori geometrici su queste due fonti di smorzamento nei resonatori DETF. Tuttavia, i risultati ottenuti per lo smorzamento fluido in un resonatore DETF a pettine utilizzando COMSOL sono considerati poco affidabili. Le ragioni di questa discrepanza vengono identificate e il problema viene affrontato introducendo il metodo delle equazioni integrali al contorno (BIE) come approccio alternativo. Inoltre, la tesi investiga l’influenza della non linearit`a geometrica, concentrandosi sull’effetto dell’irrigidimento (hard spring) e sulla sensibilit`a all’accelerazione di input.
Modelling and simulation of micro-resonators dynamics with focus on damping sources
CHEN, LINGZHI
2022/2023
Abstract
This thesis primarily focuses on the numerical simulation of a double-ended tuning fork (DETF) utilized in a resonant MEMS accelerometer. The investigation centers on three damping sources: thermoelastic damping, anchor losses, and fluid damping. The computational tool employed in this study is COMSOL Multiphysics®. The theoretical foundations of the numerical models for each damping source are explored and validated. The findings indicate that COMSOL effectively computes thermoelastic damping and anchor losses. Furthermore, the impact of geometric factors on these two damping sources in DETF resonators is examined. However, the results obtained for fluid damping in a comb-drive DETF resonator using COMSOL are deemed unreliable. The reasons behind this discrepancy are identified, and the issue is addressed by introducing the boundary integral equation (BIE) method as an alternative approach. Additionally, the thesis investigates the influence of geometric nonlinearity, focusing on the ’hard spring’ effect and on the sensitivity to input acceleration.File | Dimensione | Formato | |
---|---|---|---|
2023_7_Chen_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
11.93 MB
Formato
Adobe PDF
|
11.93 MB | Adobe PDF | Visualizza/Apri |
2023_7_Chen_Executive_Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210858