With the miniaturization and integration of optical components, Photonic Integrated Circuits (PICs) are rapidly emerging as fast as microelectronics did in the past century. As these circuits evolve, new linear optical functionalities arise. In this context, the use of Programmable PICs which control light flow dynamically is spreading into numerous applications. These devices operate primarily through electrically adjustable beam couplers connected by optical waveguides. These circuits are proficient in performing a myriad of linear tasks, including real-time matrix-vector computations real-time. However, with such advancements comes increased complexity, presenting challenges regarding the testing of these devices. This thesis presents a method for testing and calibrating the well-known Programmable Triangular Photonic Meshes. This mesh topology stands out for its capability to perform unitary matrix multiplication between input and output signals. The study delves deep into the core components of these PICs, discussing their structure, principles, and potential imperfections. Additionally, the thesis highlights the role of thermo-optic actuators in the PICs for precise control and calibration and the consequent need for assessing thermal cross-talk. An essential part of this research is the tuning algorithm that rapidly adjusts the output power of the MZI controlling the power dissipated by its actuators. The calibration process, exploiting the PIC’s diagonal topology, exhibits fast and reliable results, proving its worth for extensive testing scenarios.
Con la miniaturizzazione e l’integrazione dei componenti ottici, i Circuiti Integrati Fotonici (PICs) stanno emergendo rapidamente tanto velocemente quanto lo fece l’elettronica nel secolo scorso. Con l’evoluzione di questi circuiti, emergono nuove funzionalità ottiche lineari. In questo contesto, l’uso dei PIC programmabili che controllano dinamicamente il flusso di luce si sta diffondendo in numerose applicazioni. Questi dispositivi operano principalmente attraverso accoppiatori di fasci regolabili elettricamente connessi da guide d’onda ottiche. Questi circuiti sono capaci di svolgere una miriade di compiti lineari, inclusi calcoli di matrici-vettori in tempo reale. Tuttavia, con tali progressi arriva un aumento della complessità, che presenta sfide per quanto riguarda il testing di questi dispositivi. Questa tesi presenta un metodo per il testing e la calibrazione delle ben note Mesh Fotoniche Triangolari Programmabili. Questa topologia di mesh si distingue per la sua capacità di eseguire la moltiplicazione di matrici unitarie tra segnali in ingresso e in uscita. Lo studio approfondisce i componenti fondamentali di questi PIC, discutendo la loro struttura, principi e potenziali imperfezioni. Inoltre, la tesi mette in evidenza il ruolo degli attuatori termo-ottici nei PIC per il controllo e la calibrazione precisi e la conseguente necessità di valutare il cross-talk termico. Una parte essenziale di questa ricerca è l’algoritmo di regolazione che regola rapidamente la potenza in uscita del MZI (Interferometro a Zimmermann) controllando la potenza dissipata dai suoi attuatori. Il processo di calibrazione, sfruttando la topologia diagonale del PIC, mostra risultati rapidi e affidabili, dimostrando il suo valore per scenari di testing estensivi.
Programmable Integrated Photonic Circuits: automatic testing and calibration techniques
Rossetto, Matteo
2022/2023
Abstract
With the miniaturization and integration of optical components, Photonic Integrated Circuits (PICs) are rapidly emerging as fast as microelectronics did in the past century. As these circuits evolve, new linear optical functionalities arise. In this context, the use of Programmable PICs which control light flow dynamically is spreading into numerous applications. These devices operate primarily through electrically adjustable beam couplers connected by optical waveguides. These circuits are proficient in performing a myriad of linear tasks, including real-time matrix-vector computations real-time. However, with such advancements comes increased complexity, presenting challenges regarding the testing of these devices. This thesis presents a method for testing and calibrating the well-known Programmable Triangular Photonic Meshes. This mesh topology stands out for its capability to perform unitary matrix multiplication between input and output signals. The study delves deep into the core components of these PICs, discussing their structure, principles, and potential imperfections. Additionally, the thesis highlights the role of thermo-optic actuators in the PICs for precise control and calibration and the consequent need for assessing thermal cross-talk. An essential part of this research is the tuning algorithm that rapidly adjusts the output power of the MZI controlling the power dissipated by its actuators. The calibration process, exploiting the PIC’s diagonal topology, exhibits fast and reliable results, proving its worth for extensive testing scenarios.File | Dimensione | Formato | |
---|---|---|---|
Thesis_ROSSETTO.pdf
accessibile in internet per tutti
Descrizione: Thesis Final
Dimensione
20.35 MB
Formato
Adobe PDF
|
20.35 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_ROSSETTO.pdf
accessibile in internet per tutti
Descrizione: Executive Summary Final
Dimensione
4.81 MB
Formato
Adobe PDF
|
4.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210883