Photovoltaic Solar Panels are one of the key technologies for generating electrical energy in space environments. This thesis focuses on the design of a self-cleaning device to be integrated into a system capable of enabling solar tracking and maximizing energy generation. Smart Solar Panels (SSPs) is a project which aims to enhance traditional photovoltaic solar panels technology in two ways: by ensuring that solar panels remain perpendicular to the direction of the sunlight and by actively removing dust and contaminants that can attenuate solar radiation. These features make SSPs particularly valuable for supporting Solar System planetary exploration, and in particular for Mars, a hostile environment due to the presence of dust and dust devils which jeopardize solar panels’ efficiency strongly affecting the duration of space exploration missions. The functionalities of solar tracking and self-cleaning complement each other, leveraging gravity to improve contaminant removal, thereby maximizing cleaning efficiency. Furthermore, the adoption of SSPs brings the additional benefit of cost savings by reducing the overall payload mass required for space launches. A numerical model of a triple junctions solar panel has been developed aiming to identify the feasibility of using piezoelectric patches for dust removal. The applied methodology has been validated on literature data, whereas the patch position, number of patches and structural damping were the parameters investigated in the feasibility study. Thanks to the results obtained from finite element numerical simulations, it has been possible to find the position of the piezoelectric actuator which allows to achieve the required acceleration levels for the cleaning action. An experimental activity has been envisaged for the thesis work. A breadboard of the solar panel and the piezoelectric patches have been purchased and assembled for the testing activity. Through the modal tests, conducted on the equipped solar panel, the corresponding numerical model has been validated by adjusting the material characteristics, in particular the structural damping. Moreover, the conducted tests allowed for the definition of a cleaning strategy, subsequently verified through simulated dust depositions. The major result of this research emphasize the feasibility of achieving an efficient cleaning of solar panels through the strategic use of piezoelectric patch actuators, enabling the usage of this technology in Space. Moreover, the obtained results would allow the adoption of the developed technology in terrestrial sites characterized by hostile environments, e.g. in arid and dusty climates.
I pannelli solari fotovoltaici sono una delle tecnologie chiave per la generazione di energia elettrica in ambienti spaziali. Questa tesi è incentrata sulla progettazione di un dispositivo autopulente da integrare in un sistema in grado di garantire il tracciamento solare e massimizzare la generazione di energia. Smart Solar Panels (SSP) è un progetto che mira a migliorare i tradizionali pannelli solari fotovoltaici in due modi: garantendo che i pannelli solari rimangano perpendicolari alla direzione della luce solare e rimuovendo attivamente polvere e contaminanti che possono attenuare la radiazione solare. Queste caratteristiche rendono gli SSP particolarmente validi per supportare l’esplorazione planetaria del Sistema Solare, e in particolare su Marte, un ambiente ostile a causa della presenza di polvere e diavoli di sabbia che mettono a rischio l’efficienza dei pannelli solari e influenzano notevolmente la durata delle missioni di esplorazione spaziale. Le funzionalità di tracciamento solare e autopulizia si completano reciprocamente, sfruttando la gravità per migliorare la rimozione dei contaminanti, massimizzando così l’efficienza di pulizia. Inoltre, l’adozione degli SSP porta il beneficio aggiuntivo di risparmiare sui costi riducendo la massa complessiva del carico utile richiesto per i lanci nello spazio. È stato sviluppato un modello numerico di un pannello solare a tripla giunzione con l’obiettivo di identificare la fattibilità dell’uso di patch piezoelettriche per la rimozione di polvere. La metodologia applicata è stata convalidata tramite l’uso di dati di letteratura, mentre i parametri indagati nello studio di fattibilità sono stati la posizione delle patch, il loro numero e lo smorzamento strutturale. Grazie ai risultati ottenuti dalle simulazioni numeriche ad elementi finiti è stato possibile individuare la posizione dell’attuatore piezoelettrico per raggiungere i livelli di accelerazione richiesti per la procedura di pulizia. Nel lavoro di tesi è stata pervista un’attività sperimentale. Un equivalente meccanico del pannello solare e le patch piezoelettriche sono state acquistate e assemblate. Attraverso i test modali condotti sul pannello solare equipaggiato, il modello numerico corrispondente è stato convalidato regolando le caratteristiche del materiale, in particolare lo smorzamento strutturale. Inoltre, i test condotti hanno permesso di definire una strategia di pulizia, successivamente verificata attraverso la deposizione di polvere. Il risultato principale di questa ricerca evidenzia la fattibilità di ottenere una pulizia efficiente dei pannelli solari attraverso l’uso strategico di attuatori a patch piezoelettrica, consentendo l’uso di questa tecnologia nello spazio. Inoltre, i risultati ottenuti consentirebbero l’adozione della tecnologia sviluppata in siti terrestri caratterizzati da ambienti ostili, ad esempio in climi aridi e polverosi.
Smart Solar Panel Project: Development of an Embedded Piezoelectric Self-Cleaning Technology
Ciceri, Mirko;SCACCABAROZZI, STEFANO
2022/2023
Abstract
Photovoltaic Solar Panels are one of the key technologies for generating electrical energy in space environments. This thesis focuses on the design of a self-cleaning device to be integrated into a system capable of enabling solar tracking and maximizing energy generation. Smart Solar Panels (SSPs) is a project which aims to enhance traditional photovoltaic solar panels technology in two ways: by ensuring that solar panels remain perpendicular to the direction of the sunlight and by actively removing dust and contaminants that can attenuate solar radiation. These features make SSPs particularly valuable for supporting Solar System planetary exploration, and in particular for Mars, a hostile environment due to the presence of dust and dust devils which jeopardize solar panels’ efficiency strongly affecting the duration of space exploration missions. The functionalities of solar tracking and self-cleaning complement each other, leveraging gravity to improve contaminant removal, thereby maximizing cleaning efficiency. Furthermore, the adoption of SSPs brings the additional benefit of cost savings by reducing the overall payload mass required for space launches. A numerical model of a triple junctions solar panel has been developed aiming to identify the feasibility of using piezoelectric patches for dust removal. The applied methodology has been validated on literature data, whereas the patch position, number of patches and structural damping were the parameters investigated in the feasibility study. Thanks to the results obtained from finite element numerical simulations, it has been possible to find the position of the piezoelectric actuator which allows to achieve the required acceleration levels for the cleaning action. An experimental activity has been envisaged for the thesis work. A breadboard of the solar panel and the piezoelectric patches have been purchased and assembled for the testing activity. Through the modal tests, conducted on the equipped solar panel, the corresponding numerical model has been validated by adjusting the material characteristics, in particular the structural damping. Moreover, the conducted tests allowed for the definition of a cleaning strategy, subsequently verified through simulated dust depositions. The major result of this research emphasize the feasibility of achieving an efficient cleaning of solar panels through the strategic use of piezoelectric patch actuators, enabling the usage of this technology in Space. Moreover, the obtained results would allow the adoption of the developed technology in terrestrial sites characterized by hostile environments, e.g. in arid and dusty climates.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Ciceri_Scaccabarozzi_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
66.52 MB
Formato
Adobe PDF
|
66.52 MB | Adobe PDF | Visualizza/Apri |
2023_10_Ciceri_Scaccabarozzi_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
11.8 MB
Formato
Adobe PDF
|
11.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210941