The automotive sector is currently experiencing enormous new hurdles as a result of the introduction of more severe noise restrictions, electric vehicles, and changing customer behavior and requirements. Millions of individuals in metropolitan areas are impacted by the noise made by moving automobiles, which causes health problems for the general population. Over time, progressively tougher laws have been implemented to limit the noise that automobiles can make in order to minimize road traffic noise pollution. To face this issue, more acoustic oriented criteria must be incorporated early in the design process. Therefore it is crucial that OEMs and suppliers come up with innovative solutions in terms of product development methods. Early on in vehicles development, acoustic simulation can address this issue, guaranteeing that the vehicle will pass inspection while being tested. Additionally, modeling can provide additional light on the components that contribute to noise and suggest potential solutions to noise difficulties. This thesis focuses on the critical issue of pass-by noise simulation and the identification of equivalent noise sources in complex systems such as tyres-road interaction. Pass-by noise is a significant concern for vehicle manufacturers aiming to meet stringent noise regulations and improve customer satisfaction. This research combines Transfer Path Analysis (TPA) with optimization algorithms to develop an efficient methodology for tackling this challenge. The study begins with a review of the scientific literature and by establishing a comprehensive methodology for noise source identification. In order to validate the proposed method, analyses were carried out on preliminary models under different conditions and constraints. The results demonstrate the effectiveness of the proposed approach in capturing the complex noise propagation patterns within the vehicle structure. The combination of TPA and optimization algorithms offers a versatile and efficient means of understanding noise radiation in vehicles, facilitating the development of quieter and more competitive vehicles while meeting stringent regulatory requirements.
Il settore automobilistico sta attualmente affrontando nuove sfide a seguito dell’introduzione di restrizioni più severe sul rumore, veicoli elettrici e di cambiamenti nel comportamento e nelle esigenze dei clienti. Milioni di persone nelle aree metropolitane sono influenzate dal rumore prodotto dagli autoveicoli in movimento, il che causa problemi di salute per la popolazione generale. Nel tempo, leggi sempre più rigide sono state istituite per limitare il rumore che gli autoveicoli possono produrre al fine di ridurre l’inquinamento acustico. Da ciò nasce la necessità di incorporare criteri orientati all’acusitca aggiuntivi fin dalle fasi iniziali del processo di design. E’ quindi cruciale che i produttori di veicoli e i loro fornitori trovino soluzioni innovative in termini di metodi di sviluppo del prodotto. Sin dalle prime fasi dello sviluppo di un veicolo, la simulazione acustica può contribuire ad affrontare questo problema, garantendo che il veicolo supererà l’ispezione durante i test. Inoltre, la modellazione può fornire ulteriori informazioni sui componenti che contribuiscono al rumore e suggerire possibili rimedi per le difficoltà legate al rumore. Questa tesi si concentra sul problema cruciale della simulazione del rumore di passby e sull’identificazione delle sorgenti di rumore equivalenti in sistemi complessi, come l’interazione tra ruote e strada. Il rumore di pass-by è un parametro significativo per i produttori di veicoli che mirano a rispettare rigorose normative sul rumore e migliorare la soddisfazione del cliente. Questa ricerca combina la tecninca TPA con algoritmi di ottimizzazione per sviluppare una metodologia efficiente per affrontare questa sfida. Lo studio inizia con una revisione generale della letteratura scientifica e stabilendo una metodologia completa per l’identificazione delle fonti di rumore. Al fine di convalidare il metodo proposto, sono state condotte analisi su modelli preliminari in diverse condizioni e vincoli. I risultati dimostrano l’efficacia dell’approccio proposto nel catturare i complessi pattern di propagazione del rumore all’interno della struttura del veicolo. La combinazione della TPA e algoritmi di ottimizzazione offre un mezzo versatile ed efficiente per comprendere la radiazione del rumore nei veicoli, facilitando lo sviluppo di mezzi più silenziosi e competitivi, nel rispetto delle rigorose normative.
Simulation for pass-by noise synthesis based on transfer path analysis
CAUCIG, JACOPO
2022/2023
Abstract
The automotive sector is currently experiencing enormous new hurdles as a result of the introduction of more severe noise restrictions, electric vehicles, and changing customer behavior and requirements. Millions of individuals in metropolitan areas are impacted by the noise made by moving automobiles, which causes health problems for the general population. Over time, progressively tougher laws have been implemented to limit the noise that automobiles can make in order to minimize road traffic noise pollution. To face this issue, more acoustic oriented criteria must be incorporated early in the design process. Therefore it is crucial that OEMs and suppliers come up with innovative solutions in terms of product development methods. Early on in vehicles development, acoustic simulation can address this issue, guaranteeing that the vehicle will pass inspection while being tested. Additionally, modeling can provide additional light on the components that contribute to noise and suggest potential solutions to noise difficulties. This thesis focuses on the critical issue of pass-by noise simulation and the identification of equivalent noise sources in complex systems such as tyres-road interaction. Pass-by noise is a significant concern for vehicle manufacturers aiming to meet stringent noise regulations and improve customer satisfaction. This research combines Transfer Path Analysis (TPA) with optimization algorithms to develop an efficient methodology for tackling this challenge. The study begins with a review of the scientific literature and by establishing a comprehensive methodology for noise source identification. In order to validate the proposed method, analyses were carried out on preliminary models under different conditions and constraints. The results demonstrate the effectiveness of the proposed approach in capturing the complex noise propagation patterns within the vehicle structure. The combination of TPA and optimization algorithms offers a versatile and efficient means of understanding noise radiation in vehicles, facilitating the development of quieter and more competitive vehicles while meeting stringent regulatory requirements.File | Dimensione | Formato | |
---|---|---|---|
Master_Thesis_Jacopo_Caucig_969495.pdf
non accessibile
Descrizione: Master Thesis
Dimensione
19.7 MB
Formato
Adobe PDF
|
19.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211013