The sustainable production and exploitation of world resources are increasingly becoming key concepts in the world economy. In this context, for the coatings industry, there is a need to produce sustainable coatings with enhanced and multifunctional performance. Nowadays, widely used materials are petrol-based, with epoxy resins taking the lead accounting for approximately 70% of the market and being for 95% obtained from bisphenol A diglycidyl ether (DGEBA), a synthetic resin produced from Bisphenol A, an endocrine disruptor. Therefore, the search for bio-based resins and curing agents is ongoing. Among different bio-based epoxy resins available today, phloroglucinol triglycidyl ether (PHTE), obtained from algae, is showing impressive results due to its aromatic structure. For this reason, it was chosen for the development of an anticorrosive bio-based coating together with 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA), obtained from the depolymerisation of tomato peels by alkaline hydrolysis attained from the Italian tomato processing industry. Optimisation of coating composition was carried out varying stoichiometric ratio and catalyst concentration, resulting in a increase of glass transition temperature, crosslinking degree as well as in a decrease of unreacted epoxy groups. The most promising compositions were then deposited on steel, aluminium and glass substrates and characterised by means of mechanical, chemical, thermal and optical tests. Anticorrosion properties were analysed by means of electrochemical impedance spectroscopy (EIS) and accelerated cyclic electrochemical technique (ACET) tests. Coatings with a stoichiometric ratio of 4:1 (Epoxy:OH) and 5% wt. of catalyst gave a well crosslinked, hydrophobic, anticorrosive, rigid coating with Tg of 104 ± 12 °C and elastic modulus of 3.3 ± 0.4 GPa. However, remarkable performance was found also for the coating obtained with 5:1 ratio and 3% wt. of catalyst, having a slightly lower Tg of 77 ± 12 °C, and elastic modulus of 1.2 ± 0.2 GPa, but a better anticorrosive behaviour. Future improvements that can be made are the use of a silane coupling agent to improve the poor adhesion achieved as well as the use of additives to improve its flexibility and increase its resistance to corrosion.
La produzione sostenibile e lo sfruttamento delle risorse globali stanno diventando concetti sempre più chiave per l’economia mondiale. In questo contesto, l’industria dei rivestimenti ha la necessità di ottenere prodotti sostenibili con prestazioni migliorate e multifunzionali. Oggigiorno i materiali più utilizzati sono ottenuti da fonti fossili. Tra questi primeggiano le resine epossidiche, le quali sono ottenute per il 95% dal bisfenolo A diglicidil etere (DGEBA), una resina sintetica prodotta dal bisfenolo A, un interferente endocrino. Pertanto, la ricerca di resine e agenti indurenti di origine naturale è in corso e tra le diverse resine biologiche oggi disponibili, il floroglucinolo triglicidil etere (PHTE), sta mostrando ottimi risultati grazie alla sua struttura aromatica. Per questo motivo è stato scelto per lo sviluppo di un rivestimento biologico anticorrosivo insieme all’acido 10,16-diidrossiesadecanoico (10,16-diHHDA), ottenuto dalla depolimerizzazione delle bucce di pomodoro fornite dagli scarti dell'industria di lavorazione del pomodoro italiana. L'ottimizzazione del rivestimento è stata effettuata variando sia rapporto stechiometrico che concentrazione del catalizzatore, così da migliorare temperatura di transizione vetrosa, grado di reticolazione e diminuire i gruppi epossidici non reagiti. Le migliori formulazioni sono state depositate su substrati di acciaio, alluminio e vetro e caratterizzate mediante test meccanici, chimici, termici e ottici. Le proprietà anticorrosive si sono analizzate tramite spettroscopia di impedenza elettrochimica (EIS) e prove con tecnica elettrochimica ciclica accelerata (ACET). Si è riscontrato che con un rapporto di 4:1 (Epossidico:OH) e 5% wt. di catalizzatore si ottiene un rivestimento rigido, ben reticolato, idrofobo, anticorrosivo, con Tg di 104 ± 12 °C e modulo elastico di 3.3 ± 0.4 GPa. Prestazioni simili si sono ottenute anche per la formulazione con rapporto 5:1 e 3% wt. di catalizzatore, con una Tg 77 ± 12 °C e modulo elastico, 1.2 ± 0.2 GPa, ed un comportamento anticorrosivo migliore. Futuri miglioramenti che possono essere apportati sono l'uso di un agente legante silanico, per migliorarne la scarsa adesione nonché l'uso di additivi per migliorarne la flessibilità ed aumentarne la resistenza alla corrosione.
Development of fully bio-based epoxy coatings from tomato waste for corrosion protection
Tagliabue, Beatrice
2022/2023
Abstract
The sustainable production and exploitation of world resources are increasingly becoming key concepts in the world economy. In this context, for the coatings industry, there is a need to produce sustainable coatings with enhanced and multifunctional performance. Nowadays, widely used materials are petrol-based, with epoxy resins taking the lead accounting for approximately 70% of the market and being for 95% obtained from bisphenol A diglycidyl ether (DGEBA), a synthetic resin produced from Bisphenol A, an endocrine disruptor. Therefore, the search for bio-based resins and curing agents is ongoing. Among different bio-based epoxy resins available today, phloroglucinol triglycidyl ether (PHTE), obtained from algae, is showing impressive results due to its aromatic structure. For this reason, it was chosen for the development of an anticorrosive bio-based coating together with 10,16-dihydroxyhexadecanoic acid (10,16-diHHDA), obtained from the depolymerisation of tomato peels by alkaline hydrolysis attained from the Italian tomato processing industry. Optimisation of coating composition was carried out varying stoichiometric ratio and catalyst concentration, resulting in a increase of glass transition temperature, crosslinking degree as well as in a decrease of unreacted epoxy groups. The most promising compositions were then deposited on steel, aluminium and glass substrates and characterised by means of mechanical, chemical, thermal and optical tests. Anticorrosion properties were analysed by means of electrochemical impedance spectroscopy (EIS) and accelerated cyclic electrochemical technique (ACET) tests. Coatings with a stoichiometric ratio of 4:1 (Epoxy:OH) and 5% wt. of catalyst gave a well crosslinked, hydrophobic, anticorrosive, rigid coating with Tg of 104 ± 12 °C and elastic modulus of 3.3 ± 0.4 GPa. However, remarkable performance was found also for the coating obtained with 5:1 ratio and 3% wt. of catalyst, having a slightly lower Tg of 77 ± 12 °C, and elastic modulus of 1.2 ± 0.2 GPa, but a better anticorrosive behaviour. Future improvements that can be made are the use of a silane coupling agent to improve the poor adhesion achieved as well as the use of additives to improve its flexibility and increase its resistance to corrosion.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Tagliabue_Executive Summary_02.pdf
solo utenti autorizzati a partire dal 17/09/2026
Descrizione: Executive Summary
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri |
2023_10_Tagiabue_Tesi_01.pdf
solo utenti autorizzati a partire dal 17/09/2026
Descrizione: Testo della tesi
Dimensione
66.78 MB
Formato
Adobe PDF
|
66.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211023