The transportation sector is one of the main contributors to climate change due to its heavy reliance of fossil fuels. In 2020, it was responsible for 23% of the total EU GHG emissions, with road transport contributing to almost 77% of the total GHG emissions from the entire transportation sector. Accordingly, the use of EVs, biofuels and e-fuels are the most promising strategies to decarbonize the transport sector and improve its environmental performance. The aim of this study is to compare the environmental impacts associated with the use of petrol to those observed from the utilisation of a fuel blend containing fossil LPG, bio-LPG and renewable DME (r-DME) for two types of passenger car segments. Two production pathways for r-DME were analysed, its production as a biofuel (bio-DME) and its production as an e-fuel (e-DME). A life cycle assessment (LCA) was performed to quantify the environmental performance of the different scenarios while assuming a functional unit of 1 km driven in Italy by a Euro 6d passenger car using the SimaPro 9.5 software. Inventory data was obtained from literature sources and through the ecoinvent 3.9.1 database. Primary data for tailpipe emissions was provided by Innovhub-SSI. The EF method 3.1 was chosen as the impact assessment method with 16 impact categories analysed. The results indicated that all the scenarios with the blend offer savings in GHG emissions and a reduced impact on climate change compared to petrol. Moreover, the avoided production of petrol also resulted in improved performance on use of fossil resources, freshwater ecotoxicity, ozone depletion and particulate matter emissions. However, since the production of biofuels and e-fuels is energy intensive and relies on natural resources other than petrol, the use of the blend resulted in a worse performance on several other impact categories. Additionally, the blend with e-DME generally showed a better performance than that with bio-DME and the scenarios with the B-segment car indicated higher savings than those with the C-segment car. If equal importance is given to all impact categories, rankings indicate that the use of the blend with e-DME in a B-segment car and the use of the blend with bio-DME in a C-segment car are respectively the best and worst scenarios. Finally, three sensitivity analyses were conducted; the first indicated a 6-10% increase in climate change for, respectively, the blends and the petrol, when the exhaust emissions factors were modified to those of the real-driving test (RDE). The second implied that switching from the use of hydropower to wind power during e-DME production leads to a worse environmental performance on almost all impact categories. The third indicated that the results are not sensitive to the indirect effects of diverting UCOs for the production of bio-LPG.
Il settore dei trasporti è uno dei principali responsabili del cambiamento climatico, a causa della sua forte dipendenza dai combustibili fossili. Nel 2020 i trasporti sono stati responsabili del 23% delle emissioni totali di gas serra dell’UE, con il trasporto stradale che ha contribuito a quasi il 77% delle emissioni totali di gas serra dell’intero settore dei trasporti. Di conseguenza, l’uso di veicoli elettrici, biocarburanti ed e-fuels rappresentano le strategie più promettenti per decarbonizzare il settore dei trasporti e migliorarne le prestazioni ambientali. Lo scopo di questo studio è confrontare gli impatti ambientali associati all’uso della benzina con quelli associati all’utilizzo di una miscela di carburanti contenente GPL fossile, bio-GPL e DME rinnovabile (r-DME) per due tipi di segmenti di autovetture. Sono stati analizzati due percorsi di produzione dell'r-DME: la sua produzione come biocarburante (bio-DME) e la sua produzione come e-fuel (e-DME). Utilizzando il software SimaPro 9.5, è stata eseguita un'analisi del ciclo di vita (Life Cycle Assessment) per quantificare le prestazioni ambientali dei diversi scenari assumendo un'unità funzionale di 1 km percorso in Italia da un'autovettura Euro 6d. I dati di inventario sono stati ottenuti da fonti di letteratura e tramite il database ecoinvent 3.9.1. Dati primari delle emissioni allo scarico sono stati forniti da Innovhub-SSI, che ha svolto prove sia al banco che su strada. Come metodo di valutazione degli impatti è stato scelto il metodo EF 3.1 con 16 categorie di impatto analizzate. I risultati hanno indicato che tutti gli scenari con la miscela offrono risparmi nelle emissioni di gas serra e un impatto ridotto sul cambiamento climatico rispetto alla benzina. Inoltre, la mancata produzione di benzina comporta anche un miglioramento delle prestazioni in termini di utilizzo delle risorse fossili, ecotossicità in acque dolci, riduzione dello strato di ozono ed emissioni di particolato. Tuttavia, poiché la produzione di biocarburanti ed e-fuels è ad alta intensità energetica e si basa su risorse naturali diverse dal petrolio, l’uso della miscela ha comportato prestazioni peggiori in diverse altre categorie di impatto. Inoltre, la miscela con e-DME ha generalmente mostrato prestazioni migliori rispetto a quella con bio-DME e gli scenari con l’auto del segmento B hanno indicato maggiori riduzioni in termini di impatti rispetto all’auto di segmento C. Se si dà uguale importanza a tutte le categorie di impatto, lo studio indica che l'uso della miscela con e-DME in un'auto di segmento B e l'uso della miscela con bio-DME in un'auto di segmento C sono rispettivamente il migliore e il peggiore fra gli scenari. Infine, sono state condotte tre analisi di sensibilità; la prima ha indicato un aumento del 6-10% sul cambiamento climatico per, rispettivamente, le miscele e la benzina, quando i fattori di emissione dei gas di scarico vengono modificati con quelli misurati nei test su strada (RDE). La seconda analisi ha dimostrato che il passaggio dall’uso dell’energia idroelettrica a quella eolica per la produzione dell’e-DME porta a un peggioramento delle prestazioni ambientali in quasi tutte le categorie di impatto. La terza ha indicato che i risultati non sono sensibili agli effetti indiretti dell'utilizzo di UCO per la produzione di bio-GPL.
Well-to-wheels analysis of passenger cars fuelled with a blend of LPG, bio-LPG, and renewable DME
EID, MICHELLE
2022/2023
Abstract
The transportation sector is one of the main contributors to climate change due to its heavy reliance of fossil fuels. In 2020, it was responsible for 23% of the total EU GHG emissions, with road transport contributing to almost 77% of the total GHG emissions from the entire transportation sector. Accordingly, the use of EVs, biofuels and e-fuels are the most promising strategies to decarbonize the transport sector and improve its environmental performance. The aim of this study is to compare the environmental impacts associated with the use of petrol to those observed from the utilisation of a fuel blend containing fossil LPG, bio-LPG and renewable DME (r-DME) for two types of passenger car segments. Two production pathways for r-DME were analysed, its production as a biofuel (bio-DME) and its production as an e-fuel (e-DME). A life cycle assessment (LCA) was performed to quantify the environmental performance of the different scenarios while assuming a functional unit of 1 km driven in Italy by a Euro 6d passenger car using the SimaPro 9.5 software. Inventory data was obtained from literature sources and through the ecoinvent 3.9.1 database. Primary data for tailpipe emissions was provided by Innovhub-SSI. The EF method 3.1 was chosen as the impact assessment method with 16 impact categories analysed. The results indicated that all the scenarios with the blend offer savings in GHG emissions and a reduced impact on climate change compared to petrol. Moreover, the avoided production of petrol also resulted in improved performance on use of fossil resources, freshwater ecotoxicity, ozone depletion and particulate matter emissions. However, since the production of biofuels and e-fuels is energy intensive and relies on natural resources other than petrol, the use of the blend resulted in a worse performance on several other impact categories. Additionally, the blend with e-DME generally showed a better performance than that with bio-DME and the scenarios with the B-segment car indicated higher savings than those with the C-segment car. If equal importance is given to all impact categories, rankings indicate that the use of the blend with e-DME in a B-segment car and the use of the blend with bio-DME in a C-segment car are respectively the best and worst scenarios. Finally, three sensitivity analyses were conducted; the first indicated a 6-10% increase in climate change for, respectively, the blends and the petrol, when the exhaust emissions factors were modified to those of the real-driving test (RDE). The second implied that switching from the use of hydropower to wind power during e-DME production leads to a worse environmental performance on almost all impact categories. The third indicated that the results are not sensitive to the indirect effects of diverting UCOs for the production of bio-LPG.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Eid.pdf
non accessibile
Descrizione: Text of the thesis
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211140