ALFIO (Acoustic Load From Impedance Observation) is a method to determine the acoustic load of a loudspeaker direct-radiator system by using the loudspeaker driver as a sensor. This is achieved by comparing the driver electrical input impedance measured in free-air and within the system. The loudspeaker system under consideration is represented using standard Thiele-Small Techniques (equivalent circuits). The electrical impedance of the voice coil is modelled using the Klippel L2R2 model and subtracted from both measurements. The next step is to remove the common mechanical elements by subtraction yielding the equivalent electrical impedance of the acoustic load added to the driver. By fitting the acoustic lumped parameters of the equivalent circuit to this impedance, physical quantities such as the volume of the enclosure, the effective length of the reflex port (in the case of vented-box systems), or the mass and compliance of the auxiliary driver (in the case of systems with passive radiator) can be extracted. The method was found to be effective through modelling, simulation and experimental verification for three types of systems: Sealed, Vented and Passive Radiator Systems. Some discrepancies between the computed parameters and the measured dimensions of reference enclosures led to a sensitivity analysis aimed at finding possible sources of errors in the method. These include exploring the evaluation of the radiating surface area of the cone (SD) and the lack of complexity in existing loudspeaker models. Augmenting the models with parameters related to losses and radiation impedance improved the fit of the acoustic load curve as well as the accuracy of the computed physical parameters. A MATLAB application was developed to automate the procedure, displaying each step visually and providing the extracted physical parameters numerically.
ALFIO (Acoustic Load From Impedance Observation) è un metodo per determinare il carico acustico di un sistema di altoparlanti a radiazione diretta, confrontando l'impedenza elettrica di ingresso dell'altoparlante misurata in aria libera e all'interno del sistema. Modellando l'impedenza elettrica della bobina mobile con le tecniche standard di Thiele-Small e rimuovendo gli elementi meccanici comuni per sottrazione, si ottiene l'impedenza elettrica equivalente del carico acustico aggiunto all'altoparlante. Adattando i parametri concentrati del circuito equivalente a questa impedenza, si possono calcolare quantità fisiche come il volume della cassa, la lunghezza effettiva del condotto reflex o la massa e la cedevolezza dell'altoparlante ausiliario (nel caso di sistemi con radiatore passivo). L’efficacia del metodo viene dimostrata attraverso la modellazione, la simulazione e la verifica sperimentale. Alcune discrepanze tra i parametri calcolati e le dimensioni misurate delle casse di riferimento hanno portato a un'analisi di sensibilità volta a individuare le possibili fonti di imprecisione nei modelli di altoparlanti esistenti; ad esempio, la stima della superficie radiante del cono (SD). L'aggiunta di parametri relativi alle perdite e all'impedenza di radiazione ha migliorato l'adattamento della curva di carico acustico e l'accuratezza dei parametri fisici calcolati. È stata sviluppata un'applicazione MATLAB per automatizzare la procedura e visualizzare ogni fase sia visivamente che numericamente.
Acoustic Load from Impedance Observation: exploring the loudspeaker's equivalent acoustic model
SAID, AHMED HESHAM
2022/2023
Abstract
ALFIO (Acoustic Load From Impedance Observation) is a method to determine the acoustic load of a loudspeaker direct-radiator system by using the loudspeaker driver as a sensor. This is achieved by comparing the driver electrical input impedance measured in free-air and within the system. The loudspeaker system under consideration is represented using standard Thiele-Small Techniques (equivalent circuits). The electrical impedance of the voice coil is modelled using the Klippel L2R2 model and subtracted from both measurements. The next step is to remove the common mechanical elements by subtraction yielding the equivalent electrical impedance of the acoustic load added to the driver. By fitting the acoustic lumped parameters of the equivalent circuit to this impedance, physical quantities such as the volume of the enclosure, the effective length of the reflex port (in the case of vented-box systems), or the mass and compliance of the auxiliary driver (in the case of systems with passive radiator) can be extracted. The method was found to be effective through modelling, simulation and experimental verification for three types of systems: Sealed, Vented and Passive Radiator Systems. Some discrepancies between the computed parameters and the measured dimensions of reference enclosures led to a sensitivity analysis aimed at finding possible sources of errors in the method. These include exploring the evaluation of the radiating surface area of the cone (SD) and the lack of complexity in existing loudspeaker models. Augmenting the models with parameters related to losses and radiation impedance improved the fit of the acoustic load curve as well as the accuracy of the computed physical parameters. A MATLAB application was developed to automate the procedure, displaying each step visually and providing the extracted physical parameters numerically.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Said_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
18.41 MB
Formato
Adobe PDF
|
18.41 MB | Adobe PDF | Visualizza/Apri |
2023_10_Said_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
6.05 MB
Formato
Adobe PDF
|
6.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211188