The introduction of 3D Printing has drastically changed the technology industry in the last decades. As a new manufacturing process based on the concept of realizing three-dimensional object through layer-by-layer material deposition, it marked a significant milestone in very different fields such as aerospace, automotive, architecture, and healthcare. In particular, the use of 3D printing techniques has revolutionized the biomedical industry, offering novel solutions to several issues and challenges. The use of various 3D printing strategies to support clinical action is spreading both inside healthcare structures and as a service offered by specialized companies. Relatively to the product realization process, indications on how to manage the design and development process internal to a clinical structure are available and these activities should be on the responsibility of a professional Clinical Engineer, able to choose suppliers, select materials, and define both procedures and criteria to control these processes. The purpose of this thesis is to demonstrate the evolution of the Clinical Engineer towards new competences in the important perspective of value-based healthcare. In Chapter 1, Humanitas Research Hospital is introduced together with Humanitas University and Humanitas Research: in particular, it is described the role of the Clinical Engineering Service with respect to the biomedical equipment present in hospital, university, and research. Also, the State of the Art related to 3D printing is reported in Chapter 2, focusing on its application in medicine and considering the new EU Medical Device Regulation 2017/745. In Chapter 3, the new 3D laboratory in Humanitas called 3D Innovation Lab (3DIL) is described starting from its three lines of production that are clinic, education, and research, and then reporting the choice of the adequate equipment to properly support them. Then, in Chapter 4 and 5 respectively, a focus on the application of 3D printing techniques in mandibular reconstruction is made by first conducting a Systematic Review and then applying the Computer-Aided Design (CAD) and Computer- Aided Manufacturing (CAM) procedure to a clinical case presented in Humanitas at the end of February 2022.
L’introduzione della stampa 3D ha rivoluzionato il settore tecnologico negli ultimi decenni. Come nuovo processo di produzione basato sulla realizzazione di oggetti tridimensionali attraverso la deposizione di materiale strato dopo strato, la stampa 3D ha segnato campi molto diversi tra loro tra cui quello aerospaziale, automobilistico, edile e sanitario. In particolare, l’utilizzo delle diverse tecniche di stampa 3D offre all’industria biomedica soluzioni innovative a diverse problematiche e sfide nel campo della ricerca. L’uso di varie strategie di stampa 3D a supporto della clinica si sta diffondendo sempre di più sia all’interno delle strutture sanitarie sia come servizio offerto da aziende esterne specializzate nel campo. Per quanto riguarda il processo di realizzazione del prodotto, sono infatti disponibili indicazioni su come gestire il processo di progettazione e di sviluppo internamente alle strutture sanitarie: queste attività dovrebbero essere affidate alla figura di un Ingegnere Clinico professionista, in grado di scegliere i fornitori, selezionare i materiali e definire sia le procedure che i criteri per controllare questi processi. Lo scopo di questa tesi è quello di dimostrare l’evoluzione dell’Ingegnere Clinico verso nuove competenze nell’importante prospettiva della value-based healthcare. Nel Capitolo 1, vengono presentati l’Istituto Clinico Humanitas, l’Humanitas University e l’Humanitas Research: in particolare, viene descritto il ruolo del Servizio di Ingegneria Clinica rispetto alle apparecchiature biomediche presenti in ospedale, università e ricerca. Inoltre, nel Capitolo 2 viene riportato lo stato dell’arte relativo alla stampa 3D, focalizzandosi sulla sua applicazione in medicina e considerando il nuovo Regolamento UE sui Dispositivi Medici 2017/745. Nel Capitolo 3, viene poi descritto il nuovo laboratorio 3D in Humanitas, chiamato 3D Innovation Lab (3DIL), a partire dalle sue tre linee di produzione che sono clinica, università e ricerca con le relative attrezzature scelte a loro supporto. Infine, nei Capitoli 4 e 5, si pone l’attenzione sull’applicazione della stampa 3D nella ricostruzione mandibolare, conducendo prima una Systematic Review e poi applicando le procedure di Computer-Aided Design (CAD) e Computer-Aided Manufacturing (CAM) ad un caso clinico presentatosi in Humanitas alla fine di febbraio 2022.
The 3DIL in humanitas as a meeting point between hospital, university, and research: a patient-specific application based on cad-cam technology for mandibular reconstruction
Agawin, Catherine
2022/2023
Abstract
The introduction of 3D Printing has drastically changed the technology industry in the last decades. As a new manufacturing process based on the concept of realizing three-dimensional object through layer-by-layer material deposition, it marked a significant milestone in very different fields such as aerospace, automotive, architecture, and healthcare. In particular, the use of 3D printing techniques has revolutionized the biomedical industry, offering novel solutions to several issues and challenges. The use of various 3D printing strategies to support clinical action is spreading both inside healthcare structures and as a service offered by specialized companies. Relatively to the product realization process, indications on how to manage the design and development process internal to a clinical structure are available and these activities should be on the responsibility of a professional Clinical Engineer, able to choose suppliers, select materials, and define both procedures and criteria to control these processes. The purpose of this thesis is to demonstrate the evolution of the Clinical Engineer towards new competences in the important perspective of value-based healthcare. In Chapter 1, Humanitas Research Hospital is introduced together with Humanitas University and Humanitas Research: in particular, it is described the role of the Clinical Engineering Service with respect to the biomedical equipment present in hospital, university, and research. Also, the State of the Art related to 3D printing is reported in Chapter 2, focusing on its application in medicine and considering the new EU Medical Device Regulation 2017/745. In Chapter 3, the new 3D laboratory in Humanitas called 3D Innovation Lab (3DIL) is described starting from its three lines of production that are clinic, education, and research, and then reporting the choice of the adequate equipment to properly support them. Then, in Chapter 4 and 5 respectively, a focus on the application of 3D printing techniques in mandibular reconstruction is made by first conducting a Systematic Review and then applying the Computer-Aided Design (CAD) and Computer- Aided Manufacturing (CAM) procedure to a clinical case presented in Humanitas at the end of February 2022.File | Dimensione | Formato | |
---|---|---|---|
TESI_Agawin.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
56.3 MB
Formato
Adobe PDF
|
56.3 MB | Adobe PDF | Visualizza/Apri |
EXECUTIVESUMMARY_Agawin.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211237