Stratospheric airships have gained significant interest as a versatile platform for applications such as telecommunications, surveillance, and environmental monitoring, offering unique capabilities not found in currently employed systems. This thesis aims to design and investigate various energy conversion system configurations to develop an efficient and reliable system that best addresses application requirements, encompassing both energy storage and propulsion. The design of such systems presents significant challenges, including variable power demands, changing atmospheric conditions affecting component performance, stringent weight constraints, and the need for continuous power supply during extended missions. This work builds upon previous studies and provides an in-depth analysis of state-of-the-art energy storage and propulsion systems, focusing on fuel cells, regenerative fuel cells, electrolyzers, and ion thrusters. The thesis explores the underlying physics of these systems, emphasizing their advantages, drawbacks, and performance variations under different operating conditions. A comprehensive modeling approach is employed, transforming the initial trial-and-error methodology into a fully automated optimization process. The results of this study demonstrate the impact of newly added components on the overall system under varying operating conditions through a sensitivity analysis, showing how, with some tradeoffs, the addition of a RFC, would allow substantial weight saving for long term missions, while a conventional fuel cell may provide benefits for short term ones. On the other hand, the thrusters’ analysis shows how, the gridded air breathing ion thrusters aren’t suited for the job, the corona discharge thruster’s could provide benefits compared to propellers The findings contribute to the ongoing development of stratospheric airships, offering valuable insights into the design and optimization of energy conversion systems, ultimately enhancing the efficiency and reliability of these platforms.
I dirigibili stratosferici hanno guadagnato un notevole interesse come piattaforma versatile per applicazioni come telecomunicazioni, sorveglianza e monitoraggio ambientale, offrendo capacità uniche che non si trovano nei sistemi attualmente impiegati. Questa tesi mira a progettare e studiare varie configurazioni dei componenti di conversione dell'energia per sviluppare un sistema efficiente e affidabile che soddisfi al meglio i requisiti della missione, comprendendo sia l'accumulo di energia che la propulsione. La progettazione di tali sistemi presenta sfide significative, tra cui, richieste di potenza variabili, condizioni atmosferiche mutevoli che influenzano le prestazioni dei componenti, vincoli di peso rigorosi e la necessità di un'alimentazione continua e prolungata. Questo lavoro si pone come proseguimento di studi precedenti e fornisce un'analisi approfondita dei sistemi di accumulo di energia e propulsione allo stato dell’arte, concentrandosi su celle a combustibile, sia rigenerative che non, elettrolizzatori e propulsori ionici. La tesi esplora la fisica alla base di questi sistemi, sottolineando i loro vantaggi, svantaggi e variazioni di prestazioni in diverse condizioni operative. Il modello viene rivisto, trasformando la metodologia iniziale basata su tentativi ed errori in un processo di ottimizzazione completamente automatizzato. I risultati di questo studio dimostrano l'impatto che l’aggiunta dei nuovi componenti ha al sistema nella sua interezza, tenendo conto della variabilità delle condizioni operative attraverso un'analisi di sensibilità, che mostra come, con alcuni compromessi, l'aggiunta di un RFC consentirebbe un sostanziale risparmio di peso per le missioni a lungo termine, mentre le celle a combustibile convenzionali possano fornire vantaggi per brevi durate. D'altra parte, l'analisi dei propulsori mostra come, i propulsori ionici a griglia non siano soddisfacenti, mentre i propulsori a scarica a corona potrebbero fornire vantaggi rispetto ai propulsori convenzionali. I risultati contribuiscono allo sviluppo continuo dei dirigibili stratosferici, offrendo preziose informazioni nella progettazione e ottimizzazione dei sistemi di conversione dell'energia, migliorando in definitiva l'efficienza e l'affidabilità di queste piattaforme.
Design of ligther-than-air flying systems with innovative propulsion and energy storage
Ciccocelli, Fabrizio
2021/2022
Abstract
Stratospheric airships have gained significant interest as a versatile platform for applications such as telecommunications, surveillance, and environmental monitoring, offering unique capabilities not found in currently employed systems. This thesis aims to design and investigate various energy conversion system configurations to develop an efficient and reliable system that best addresses application requirements, encompassing both energy storage and propulsion. The design of such systems presents significant challenges, including variable power demands, changing atmospheric conditions affecting component performance, stringent weight constraints, and the need for continuous power supply during extended missions. This work builds upon previous studies and provides an in-depth analysis of state-of-the-art energy storage and propulsion systems, focusing on fuel cells, regenerative fuel cells, electrolyzers, and ion thrusters. The thesis explores the underlying physics of these systems, emphasizing their advantages, drawbacks, and performance variations under different operating conditions. A comprehensive modeling approach is employed, transforming the initial trial-and-error methodology into a fully automated optimization process. The results of this study demonstrate the impact of newly added components on the overall system under varying operating conditions through a sensitivity analysis, showing how, with some tradeoffs, the addition of a RFC, would allow substantial weight saving for long term missions, while a conventional fuel cell may provide benefits for short term ones. On the other hand, the thrusters’ analysis shows how, the gridded air breathing ion thrusters aren’t suited for the job, the corona discharge thruster’s could provide benefits compared to propellers The findings contribute to the ongoing development of stratospheric airships, offering valuable insights into the design and optimization of energy conversion systems, ultimately enhancing the efficiency and reliability of these platforms.File | Dimensione | Formato | |
---|---|---|---|
2023_05_CICCOCELLI_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: 2023 05 Ciccocelli executive summary
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri |
2023_05_CICCOCELLI_THESIS.pdf
accessibile in internet per tutti
Descrizione: 2023 05 Ciccocelli thesis
Dimensione
7.94 MB
Formato
Adobe PDF
|
7.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211425