Hypergolic fuels have been the go-to for in-space propulsive applications for the last 60 years. To this day, the hypergolic scene has been dominated by the highly toxic Hydrazine and its amines, coupled with Dinitrogen Tetroxide or Nitric Acid. The toxicity of these fuels has become of great concern for the European Union, thus the research and development of new non-toxic compounds have gained a lot of interest in the propulsion field. Alcohol-based compounds with Hydrogen Peroxide as oxidizer are one of the most promising alternatives. Ethanol and Hydrogen Peroxide, however, are not hypergolic, thus an additive that decomposes the oxidizer to release heat is needed. Two additives, Copper Nitrate Trihydrate and Manganese Dioxide, that give non-toxic combustion products are selected and investigated. Copper Nitrate Trihydrate in an Ethanol solution does not decompose the 98% Hydrogen Peroxide, but it is oxidized to Copper Oxide, absorbing all the energy eventually released, and thus it is discarded. Manganese Dioxide instead decomposes Hydrogen Peroxide, but it is not soluble in Ethanol. Two different solubility agents, Sodium Citrate and Citric Acid, are studied, with the former giving promising results. It is proved that by increasing the amount of the Citrate in the solution, the final effective concentration of Manganese Dioxide rises. Screening tests are done, and ignition is achieved only a single time. The addition of Ethanolamine, which is reported to be hypergolic with the oxidizer, is thus required. Benchmark drop tests using only Ethanolamine and the additive are performed, obtaining ignition only with high concentrations of Sodium Citrate. An Ethanol-Ethanolamine blend is thus necessary for achieving a repeatable ignition. A 5% of Sodium Citrate is found to be the best concentration for obtaining the lowest Ignition Delay Time of 29 ± 5 ms, together with the one of Ethanolamine between 30% and 40%. However, the ignition probability has a negative trend with the increase in the concentration of the amine. A trade-off is thus needed between the IDT and the ignition probability. Lastly, the performances in terms of vacuum specific impulse and volumetric specific impulse of the developed fuel are compared with the ones of a fuel having Copper Nitrate Trihydrate as the additive and the ones of a Hydrazine-based propellant.
I combustibili ipergolici sono stati la soluzione per applicazioni propulsive in ambito spaziale per gli ultimi 60 anni. Fino ad oggi, il mondo dei carburanti ipergolici è stato dominato dall’altamente tossica Idrazina e i suoi derivati, usati insieme a Tetrossido di Azoto o Acido Nitrico. La tossicità di questi combustibili è diventata una grande preoccupazione per l’Unione Europea, e di conseguenza la ricerca incentrata sullo sviluppo di composizioni non tossiche è divenuta di grande interesse nel campo della propulsione. Formulazioni a base di alcool con Perossido di Idrogeno come ossidante sono tra le alternative più promettenti. Etanolo e Perossido di Idrogeno però non sono ipergolici, e di conseguenza l’aggiunta di un additivo che decomponga l’ossidante per rilasciare calore è necessaria. Due additivi, il Nitrato di Rame Triidrato e l’Ossido di Manganese, sono selezionati ed investigati. Il Nitrato di Rame Triidrato in soluzione in Etanolo non decompone il Perossido di Idrogeno concentrato al 98%, ma viene ossidato a Ossido di Rame, assorbendo tutta l’energia eventualmente rilasciata, e di conseguenza viene scartato. L’Ossido di Manganese invece decompone il Perossido di Idrogeno, ma non è solubile in Etanolo. Due differenti agenti solubilizzanti, il Citrato di Sodio e l’Acido Citrico, sono studiati, con il primo che dà risultati incoraggianti. Viene dimostrato che aumentando la quantità di Citrato nella soluzione, la concentrazione effettiva finale di Manganese cresce. Dei test di screening vengono fatti, e l’accensione è ottenuta una singola volta. L’aggiunta di Etanolammina, ipergolica con l’ossidante, è necessaria. Dei test di caduta per stabilire un punto di riferimento usando solo Etanolammina e l’additivo vengono eseguiti, ottenendo accensioni solo con alte concentrazioni di Citrato. Una miscela di Etanolo ed Etanolammina è dunque necessaria per ottenere accensioni ripetibili. Un 5% di Citrato è la concentrazione ottimale per ottenere il minor ritardo di accensione di 29 ± 5 ms, insieme ad una di Etanolammina compresa tra il 30% e il 40%. Tuttavia, la probabilità di accensione ha un andamento negativo con l’aumentare della concentrazione dell’ammina. Un bilancio tra ritardo e probabilità di accensione è necessario. Infine, viene fatto un confronto con un propellente con Nitrato di Rame ed uno a base di Idrazina.
Hypergolicity study of new ethanol-based catalytic fuels with hydrogen peroxide
MORDACCI, ANDREA
2022/2023
Abstract
Hypergolic fuels have been the go-to for in-space propulsive applications for the last 60 years. To this day, the hypergolic scene has been dominated by the highly toxic Hydrazine and its amines, coupled with Dinitrogen Tetroxide or Nitric Acid. The toxicity of these fuels has become of great concern for the European Union, thus the research and development of new non-toxic compounds have gained a lot of interest in the propulsion field. Alcohol-based compounds with Hydrogen Peroxide as oxidizer are one of the most promising alternatives. Ethanol and Hydrogen Peroxide, however, are not hypergolic, thus an additive that decomposes the oxidizer to release heat is needed. Two additives, Copper Nitrate Trihydrate and Manganese Dioxide, that give non-toxic combustion products are selected and investigated. Copper Nitrate Trihydrate in an Ethanol solution does not decompose the 98% Hydrogen Peroxide, but it is oxidized to Copper Oxide, absorbing all the energy eventually released, and thus it is discarded. Manganese Dioxide instead decomposes Hydrogen Peroxide, but it is not soluble in Ethanol. Two different solubility agents, Sodium Citrate and Citric Acid, are studied, with the former giving promising results. It is proved that by increasing the amount of the Citrate in the solution, the final effective concentration of Manganese Dioxide rises. Screening tests are done, and ignition is achieved only a single time. The addition of Ethanolamine, which is reported to be hypergolic with the oxidizer, is thus required. Benchmark drop tests using only Ethanolamine and the additive are performed, obtaining ignition only with high concentrations of Sodium Citrate. An Ethanol-Ethanolamine blend is thus necessary for achieving a repeatable ignition. A 5% of Sodium Citrate is found to be the best concentration for obtaining the lowest Ignition Delay Time of 29 ± 5 ms, together with the one of Ethanolamine between 30% and 40%. However, the ignition probability has a negative trend with the increase in the concentration of the amine. A trade-off is thus needed between the IDT and the ignition probability. Lastly, the performances in terms of vacuum specific impulse and volumetric specific impulse of the developed fuel are compared with the ones of a fuel having Copper Nitrate Trihydrate as the additive and the ones of a Hydrazine-based propellant.File | Dimensione | Formato | |
---|---|---|---|
Mordacci___Thesis.pdf
non accessibile
Dimensione
50.03 MB
Formato
Adobe PDF
|
50.03 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary.pdf
non accessibile
Dimensione
363.4 kB
Formato
Adobe PDF
|
363.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/211857