Coherent Raman Scattering (CRS) microscopy is a powerful nonlinear vibrational imaging technique that provides label-free chemical maps of cells and tissues. In CRS, vibrational modes of molecules are excited coherently by two pulses (pump and Stokes), spatially and temporally overlapped. An example of CRS implementation is Coherent anti-Stokes Raman Scattering (CARS). Broadband CARS (B-CARS) exploits a narrowband pump beam and a broadband Stokes to excite several vibrational modes at once. In wide-field CARS (WF-CARS) the sample is illuminated with pump and Stokes beams over a large area, allowing very high acquisition speeds. This thesis deals with the development of a Broadband WF-CARS setup. The source is an Ytterbium-amplified laser, providing ≈270-fs long pulses at 1035 nm, with repetition rate of 2 MHz and 40-W average power. The fundamental beam is divided into three branches: two act as pump and signal of a non-collinear optical parametric amplifier (NOPA), while one is the pump of CARS. The latter passes through an etalon, generating a beam with ≈1.5 W power and narrow bandwidth. The pump of NOPA is obtained generating second harmonic in a BBO crystal. The signal of NOPA arises from white-light generation in a YAG crystal, broadening the spectrum to 1100-1500 nm, covering the entire fingerprint region (500-1800 cm−1). The two beams interact in another BBO crystal, amplifying the signal, which then acts as Stokes for CARS. A 4-f system selects a single wavelength of the broadband Stokes beam. Pump and Stokes illuminate the sample with a diameter of ≈100 μm. The entire field of view is acquired in a single shot with a sCMOS camera. We acquired CARS hypercubes of DMSO and toluene at high speed, from which we retrieved the vibrational spectra. The acquisition time for a single pixel over the entire CARS spectrum is ≈6 ms, ensuring a video-rate level, but in the future we aim to reduce this time to ≈0.5 ms to investigate in real time fast biological dynamics.
La microscopia a Scattering Raman Coerente (CRS) è una potente tecnica di imaging vibrazionale non lineare che fornisce mappe chimiche label-free di cellule e tessuti. Nel CRS, i modi vibrazionali delle molecole sono eccitati coerentemente da due impulsi (pompa e Stokes), sovrapposti spazialmente e temporalmente. Un esempio di implementazione CRS è lo Scattering anti-Stokes Raman Coerente (CARS). Il CARS a banda larga (BCARS) sfrutta un impulso stretto di pompa e un impulso di Stokes a banda larga per eccitare svariati livelli vibrazionali in una volta. Nel wide-field CARS (WF-CARS) il campione è illuminato con impulsi di pompa e Stokes su una grande area, permettendo alte velocità di acquisizione. Questa tesi si occupa dello sviluppo di un setup di WF-CARS a banda larga. La sorgente è un laser amplificato ad itterbio, che fornisce impulsi lunghi ≈270-fs a 1035 nm, con una frequenza di ripetizione di 2 MHz e 40Wdi potenza media. Il raggio fondamentale è diviso in tre rami: due agiscono come pompa e segnale di un amplificatore ottico parametrico non collineare (NOPA), mentre uno è la pompa del CARS. Quest’ultimo passa attraverso un etalon, generando un fascio con potenza di ≈1.5 W e banda stretta. La pompa del NOPA è ottenuto generando seconda armonica in un cristallo di BBO. Il segnale del NOPA nasce da generazione di luce bianca in un cristallo di YAG, allargando lo spettro a 1100-1500 nm, coprendo l’intera regione di fingerprint (500-1800 cm−1). I due fasci interagiscono in un altro cristallo di BBO, amplificando il segnale, che agisce da Stokes per il CARS. Un sistema 4-f seleziona una singola lunghezza d’onda del fascio Stokes a banda larga. La pompa e lo Stokes illuminano il campione con un diametro di circa ≈100 μm. L’intero campo visivo è acquisito in un unico scatto con una camera sCMOS. Abbiamo acquisito ipercubi CARS di DMSO e toluene ad alta velocità, da cui abbiamo ricavato gli spettri vibrazionali. Il tempo di acquisizione di un singolo pixel sull’intero spettro CARS è ≈6 ms, che assicura un livello di video-rate, ma in futuro ci prefiggiamo di ridurre questo tempo a ≈0.5 ms per investigare in tempo reale dinamiche biologiche veloci.
High-speed wide-field broadband coherent Raman microscopy
RABOLINI, ANDREA
2021/2022
Abstract
Coherent Raman Scattering (CRS) microscopy is a powerful nonlinear vibrational imaging technique that provides label-free chemical maps of cells and tissues. In CRS, vibrational modes of molecules are excited coherently by two pulses (pump and Stokes), spatially and temporally overlapped. An example of CRS implementation is Coherent anti-Stokes Raman Scattering (CARS). Broadband CARS (B-CARS) exploits a narrowband pump beam and a broadband Stokes to excite several vibrational modes at once. In wide-field CARS (WF-CARS) the sample is illuminated with pump and Stokes beams over a large area, allowing very high acquisition speeds. This thesis deals with the development of a Broadband WF-CARS setup. The source is an Ytterbium-amplified laser, providing ≈270-fs long pulses at 1035 nm, with repetition rate of 2 MHz and 40-W average power. The fundamental beam is divided into three branches: two act as pump and signal of a non-collinear optical parametric amplifier (NOPA), while one is the pump of CARS. The latter passes through an etalon, generating a beam with ≈1.5 W power and narrow bandwidth. The pump of NOPA is obtained generating second harmonic in a BBO crystal. The signal of NOPA arises from white-light generation in a YAG crystal, broadening the spectrum to 1100-1500 nm, covering the entire fingerprint region (500-1800 cm−1). The two beams interact in another BBO crystal, amplifying the signal, which then acts as Stokes for CARS. A 4-f system selects a single wavelength of the broadband Stokes beam. Pump and Stokes illuminate the sample with a diameter of ≈100 μm. The entire field of view is acquired in a single shot with a sCMOS camera. We acquired CARS hypercubes of DMSO and toluene at high speed, from which we retrieved the vibrational spectra. The acquisition time for a single pixel over the entire CARS spectrum is ≈6 ms, ensuring a video-rate level, but in the future we aim to reduce this time to ≈0.5 ms to investigate in real time fast biological dynamics.File | Dimensione | Formato | |
---|---|---|---|
2023_05_Rabolini_Tesi_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
22.14 MB
Formato
Adobe PDF
|
22.14 MB | Adobe PDF | Visualizza/Apri |
2023_05_Rabolini_Executive_Summary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/212399