This investigation thoroughly evaluates two prominent in-field wind turbine blade repair methodologies, namely the small-to-large and large-to-small scarf repairs, executed by a specialized company (YCE Blades), using the wet hand layup process. These repairs were performed on a quasi-isotropic and symmetric glass-epoxy composite laminate, denoted by the lamination code [+-45/90/0]s, characteristic of secondary-structural laminates used in wind turbine blades. The parental laminate was manufactured via vacuum infusion as is common practice in wind turbine blades. An extensive mechanical assessment encompassing static tests, such as tensile and Interlaminar Shear Strength (ILSS) tests, was then conducted to explore the performance of these repairs under different temperature and moisture conditions. Key findings are an increased moisture absorption in the repairs alongside with a reduced fiber volume fraction, intrinsic of the hand-layup process. In the tensile tests, the large-to-small repair exhibited a substantial reduction in tensile strength (from 70 to 80%) across all test conditions in comparison to the parental laminate. Although the small-to-large repair performed better (from 50 to 67%), its tensile strength was half or less than that of the parental laminate under all test conditions. A notable reduction in stiffness was also observed in both repairs (from 15 to 30%), with a less performance difference under moisture conditioning. Linking these findings with a failure modes analysis, the vulnerabilities of the repairs were identified as inherent to the hand-layup process and scarf geometry. In particular, the critical role of the scarf interlayer as the "weakest chain link" was ascertained. The ILSS tests further unveiled a lower restoration of bending stiffness for the hand-layup composite, exhibiting a pronounced plastic failure behaviour. In conclusion, this study highlights the superior performance of the small-to-large repair method, though its efficacy diminishes in moisture-rich environments, rendering it suboptimal. This underlines the criticality of continuous maintenance and advancement of repair methodologies to extend blade longevity.
Questa ricerca riguarda la valutazione delle principali metodologie di riparazione in campo di pale eoliche, ossia le sovrapposizioni piccola-grande e grande-piccola. Le riparazioni sono state eseguite tramite laminazione manuale su di un laminato vetroresina quasi-isotropo e simmetrico ([+-45/90/0]s), tipico di alcuni laminati strutturali formanti le pale. Quest’ultimo è stato realizzato tramite l’infusione assistita da vuoto. Queste operazioni sono state eseguite in congiunta con un’azienda specializzata (YCE Blades) nella riparazione pale. Per caratterizzare le riparazioni, sono state condotte prove di valutazione di assorbimento d'umidità, quantità di fibra e test meccanici in termini di trazione e resistenza interlaminare. Diverse condizioni ambientali sono state imposte durante i test per stabilire gli effetti di temperatura e umidità sulle proprietà del laminato. I risultati mostrano un maggiore assorbimento d'umidità nelle riparazioni e una ridotta frazione di fibra. In particolare, nei test di trazione, la riparazione grande-piccola ha avuto una notevole riduzione di resistenza (dal 70 al 80%) rispetto al laminato originale. La riparazione piccola-grande, sebbene migliore (dal 50 al 67%), ha mostrato una resistenza dimezzata o inferiore rispetto al laminato vergine. Anche il modulo è stato interessato da una riduzione di rigidità nelle le riparazioni (dal 15 al 30%) con evidenti cali maggiori in presenza di umidità elevata. In questa condizione le due riparazioni hanno offerto valori meccanici simili. Il motivo di queste riduzioni si è evinto grazie ad un’analisi delle modalità di rottura. In particolare, a causa del processo produttivo e dell’effetto geometrico della riparazione, l'interfaccia riparazione-laminato è risultata essere “l’elemento debole della catena”. Invece, i test ILSS hanno mostrato minor ripristino di rigidità flessionale e comportamento plastico nel composito riparato. In conclusione, è possibile osservare come la riparazione piccola-grande abbia qualità superiori, ma la sua efficacia è messa a rischio in ambienti umidi. Queste osservazioni sottolineano la necessità di un progresso continuo delle metodologie di riparazione per estendere la longevità delle pale.
Environmental effects on different in-field wind turbine blade repairs
Peppicelli, Filippo
2022/2023
Abstract
This investigation thoroughly evaluates two prominent in-field wind turbine blade repair methodologies, namely the small-to-large and large-to-small scarf repairs, executed by a specialized company (YCE Blades), using the wet hand layup process. These repairs were performed on a quasi-isotropic and symmetric glass-epoxy composite laminate, denoted by the lamination code [+-45/90/0]s, characteristic of secondary-structural laminates used in wind turbine blades. The parental laminate was manufactured via vacuum infusion as is common practice in wind turbine blades. An extensive mechanical assessment encompassing static tests, such as tensile and Interlaminar Shear Strength (ILSS) tests, was then conducted to explore the performance of these repairs under different temperature and moisture conditions. Key findings are an increased moisture absorption in the repairs alongside with a reduced fiber volume fraction, intrinsic of the hand-layup process. In the tensile tests, the large-to-small repair exhibited a substantial reduction in tensile strength (from 70 to 80%) across all test conditions in comparison to the parental laminate. Although the small-to-large repair performed better (from 50 to 67%), its tensile strength was half or less than that of the parental laminate under all test conditions. A notable reduction in stiffness was also observed in both repairs (from 15 to 30%), with a less performance difference under moisture conditioning. Linking these findings with a failure modes analysis, the vulnerabilities of the repairs were identified as inherent to the hand-layup process and scarf geometry. In particular, the critical role of the scarf interlayer as the "weakest chain link" was ascertained. The ILSS tests further unveiled a lower restoration of bending stiffness for the hand-layup composite, exhibiting a pronounced plastic failure behaviour. In conclusion, this study highlights the superior performance of the small-to-large repair method, though its efficacy diminishes in moisture-rich environments, rendering it suboptimal. This underlines the criticality of continuous maintenance and advancement of repair methodologies to extend blade longevity.File | Dimensione | Formato | |
---|---|---|---|
2023_12_PEPPICELLI_Thesis_01.pdf
non accessibile
Dimensione
4.75 MB
Formato
Adobe PDF
|
4.75 MB | Adobe PDF | Visualizza/Apri |
2023_12_PEPPICELLI_Executive Summary_02.pdf
non accessibile
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/213954