This thesis presents the development of a compact, microcontroller-based spectrometer designed for in-flow detection and quantification of radioactive isotopes in airborne particulate matter. Central to this innovative device is an hollow, Thallium-doped Cesium Iodide (CsI(Tl)) scintillator, facilitating the flow of air and the capture of particulate matter via a strategically positioned micrometric filter. This design, inspired by the continuous detectors employed in PET, ensures comprehensive gamma-ray detection from all directions. This cube-sized device is remarkably compact, occupying a volume of just 10 x 10 x 10 cm, making it compatible with a variety of unmanned flying vehicles, including experimental rockets. Additionally, the design of the structure effectively blocks most of the external light that could interfere with the measurements of radiation coming from the collected airbone isotopes. Key aspects of this study include the detailed mechanical design and electronic architecture focused on Silicon Photomultiplier (SiPM) readout. Preliminary characterizations and simulations have been performed to optimize the SiPM arrangement, leading to an anticipated energy resolution better than 9% at 662 keV. Notably, the spectrometer is equipped with a removable SD card, facilitating the easy storage and post-launch analysis of data. The robustness of the design, as well as its autonomy, was rigorously tested through its integration as a scientific payload in an experimental rocket launch. An accelerometer was utilized to monitor the acceleration profile during the launch, providing critical data on the system’s operational integrity under dynamic conditions. These tests have been instrumental in validating the device’s performance and endurance in real-world scenarios. The findings from this research highlight the feasibility and effectiveness of using compact, portable spectrometers for real-time environmental monitoring. The device’s ability to store and facilitate post-launch data analysis, coupled with its successful performance in experimental rocket tests, underscores its potential for rapid and efficient environmental assessment, especially in emergency situations or routine air quality monitoring. The discussion of the thesis is subdiveded in 5 chapters: • Chapter 1 : the background of the project is introduced, providing an overview of the fundamental aspects of gamma spectrometry. Furthermore, the primary motivations and objectives of the project are discussed. • Chapter 2 : the scintillator utilized in the project is described, along with an explanation of the SiPM (Silicon Photomultiplier) principle. The rationale behind the decision to use this specific type of SiPM is also explained. Additionally, simulations conducted in ANTS2 to determine the optimal geometry configurations are presented. • Chapter 3 : the comprehensive overview of the system is presented, starting with its mechanical and structural aspects, elaborating on the cube’s design and constraints. This is followed by a thorough exposition of the electronic segment, encompassing the choice of components, their sizing, and the PCBs developed. The chapter culminates with a detailed account of the firmware utilized to control the entire system. • Chapter 4 : the conducted tests for system validation are shown. Specifically, the characterization of the spectrometer is detailed, utilizing known radioactive sources for calibration and quantifying the system’s energy resolution. The acceleration profile recorded by the payload during field testing is also presented, demonstrating the mechanical robustness of the structure. Lastly, the quantification of the aspirated airflow and the amount of fine dust the system can collect for radioactive monitoring of the air are revealed. • Chapter 5 : contains a summary of the results obtained, the problems and the limitations observed and the future developments for the project.
Questa tesi presenta lo sviluppo di uno spettrometro compatto, basato su microcontrollore, progettato per la rilevazione e la quantificazione in flusso di isotopi radioattivi in particelle aerodisperse. Elemento centrale di questo dispositivo innovativo è uno scin- tillatore cavo di Ioduro di Cesio dopato con Tallio (CsI(Tl)), che facilita il flusso d’aria e la cattura di particelle attraverso un filtro micrometrico strategicamente posizionato. Questa progettazione garantisce un’ampia rilevazione dei raggi gamma da tutte le di- rezioni. Il dispositivo è notevolmente compatto, occupando un volume cubico di soli 10 cm³, rendendolo compatibile con una varietà di veicoli volanti senza pilota, inclusi razzi sperimentali. Aspetti chiave di questo studio includono il dettagliato design meccanico e l’architettura elettronica focalizzata sulla lettura dei Silicon Photomultiplier (SiPM). Sono state effettuate caratterizzazioni preliminari e simulazioni per ottimizzare la disposizione dei SiPM, portando a una risoluzione energetica prevista migliore del 9% a 662 keV. Tale configurazione, ripresa dalla disposizione continua dei cristalli utilizzata nella PET, assicura un’efficace rilevazione dei raggi gamma da tutte le direzioni. Lo spettrometro, inoltre, è dotato di una scheda SD rimovibile, che facilita la memorizzazione e analisi dei dati post-lancio. La robustezza del progetto, così come la sua autonomia energetica, è stata rigorosamente testata attraverso la sua integrazione come payload scientifico in un lancio di razzo sperimentale. Un accelerometro è stato utilizzato per monitorare il profilo di accelerazione durante il lancio, fornendo dati critici sull’integrità operativa del sistema in condizioni dinamiche. Questi test sono stati fondamentali per convalidare le prestazioni e la resistenza del dispositivo in scenari reali. I risultati di questo lavoro evidenziano la fattibilità e l’efficacia nell’utilizzo di spettrometri compatti e portatili per il monitoraggio ambientale in tempo reale. La capacità del dispos- itivo di memorizzare e facilitare l’analisi dei dati post-lancio, unita alla sua performance nei test con razzi sperimentali, sottolinea il suo potenziale per valutazioni ambientali rapide ed efficienti, specialmente in situazioni di emergenza o nel monitoraggio ordinario della qualità dell’aria. La tesi è suddivisa in 5 capitoli: • Capitolo 1 : viene introdotto il contesto del progetto, fornendo una panoramica degli aspetti fondamentali della spettrometria gamma. Inoltre, vengono discusse le principali motivazioni e obiettivi del progetto. • Capitolo 2 : si descrive lo scintillatore utilizzato nel progetto, accompagnato da una spiegazione del principio di funzionamento dei SiPM (Silicon Photomultiplier)e motivata la scelta di questo specifico tipo di SiPM. Sono inoltre presentate le simulazioni condotte in ANTS2 per determinare le configurazioni geometriche ottimali. • Capitolo 3 : si presenta una panoramica completa del sistema, iniziando dagli aspetti meccanici e strutturali, approfondendo il design e i vincoli del cubo. Questo è seguito da una dettagliata esposizione della parte elettronica, che comprende la scelta dei componenti, il loro dimensionamento e le PCB sviluppate. La sezione culmina con una descrizione dettagliata del firmware utilizzato per controllare l’intero sistema. • Capitolo 4 : vengono presentati i test condotti per la validazione del sistema. In particolare, viene illustrata la caratterizzazione dello spettrometro, utilizzando sorgenti radioattive note per la calibrazione e quantificando la risoluzione energetica del sistema. È presentato anche il profilo di accelerazione registrato dal payload durante i test sul campo, a dimostrazione della robustezza meccanica della struttura. Infine, viene rivelata la quantificazione del flusso d’aria aspirato e della quantità di polveri sottili che il sistema può raccogliere per il monitoraggio radioattivo dell’aria. • Capitolo 5 : contiene un riassunto dei risultati ottenuti, dei problemi e dei limiti osservati e degli sviluppi futuri per il progetto.
A Compact CubeSat-sized Gamma-Ray Spectrometer for Monitoring of Radioactive Particulates in the Atmosphere
Lilliu, Marco
2022/2023
Abstract
This thesis presents the development of a compact, microcontroller-based spectrometer designed for in-flow detection and quantification of radioactive isotopes in airborne particulate matter. Central to this innovative device is an hollow, Thallium-doped Cesium Iodide (CsI(Tl)) scintillator, facilitating the flow of air and the capture of particulate matter via a strategically positioned micrometric filter. This design, inspired by the continuous detectors employed in PET, ensures comprehensive gamma-ray detection from all directions. This cube-sized device is remarkably compact, occupying a volume of just 10 x 10 x 10 cm, making it compatible with a variety of unmanned flying vehicles, including experimental rockets. Additionally, the design of the structure effectively blocks most of the external light that could interfere with the measurements of radiation coming from the collected airbone isotopes. Key aspects of this study include the detailed mechanical design and electronic architecture focused on Silicon Photomultiplier (SiPM) readout. Preliminary characterizations and simulations have been performed to optimize the SiPM arrangement, leading to an anticipated energy resolution better than 9% at 662 keV. Notably, the spectrometer is equipped with a removable SD card, facilitating the easy storage and post-launch analysis of data. The robustness of the design, as well as its autonomy, was rigorously tested through its integration as a scientific payload in an experimental rocket launch. An accelerometer was utilized to monitor the acceleration profile during the launch, providing critical data on the system’s operational integrity under dynamic conditions. These tests have been instrumental in validating the device’s performance and endurance in real-world scenarios. The findings from this research highlight the feasibility and effectiveness of using compact, portable spectrometers for real-time environmental monitoring. The device’s ability to store and facilitate post-launch data analysis, coupled with its successful performance in experimental rocket tests, underscores its potential for rapid and efficient environmental assessment, especially in emergency situations or routine air quality monitoring. The discussion of the thesis is subdiveded in 5 chapters: • Chapter 1 : the background of the project is introduced, providing an overview of the fundamental aspects of gamma spectrometry. Furthermore, the primary motivations and objectives of the project are discussed. • Chapter 2 : the scintillator utilized in the project is described, along with an explanation of the SiPM (Silicon Photomultiplier) principle. The rationale behind the decision to use this specific type of SiPM is also explained. Additionally, simulations conducted in ANTS2 to determine the optimal geometry configurations are presented. • Chapter 3 : the comprehensive overview of the system is presented, starting with its mechanical and structural aspects, elaborating on the cube’s design and constraints. This is followed by a thorough exposition of the electronic segment, encompassing the choice of components, their sizing, and the PCBs developed. The chapter culminates with a detailed account of the firmware utilized to control the entire system. • Chapter 4 : the conducted tests for system validation are shown. Specifically, the characterization of the spectrometer is detailed, utilizing known radioactive sources for calibration and quantifying the system’s energy resolution. The acceleration profile recorded by the payload during field testing is also presented, demonstrating the mechanical robustness of the structure. Lastly, the quantification of the aspirated airflow and the amount of fine dust the system can collect for radioactive monitoring of the air are revealed. • Chapter 5 : contains a summary of the results obtained, the problems and the limitations observed and the future developments for the project.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Lilliu.pdf
solo utenti autorizzati dal 29/11/2024
Descrizione: Tesi
Dimensione
17.01 MB
Formato
Adobe PDF
|
17.01 MB | Adobe PDF | Visualizza/Apri |
2023_12_Lilliu_Executive_Summary.pdf
solo utenti autorizzati dal 29/11/2024
Descrizione: Executive Summary
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214181