Recommender systems, information retrieval systems that provide suggestions of interesting items or content to users, are nowadays ubiquitous as catalogs in online applications are becoming extremely vast and difficult to interact with in non-personalized ways. Modern recommendation engines are based on collaborative filtering techniques, that provide suggestions by exploiting patterns that are automatically identified on past user interactions, which substantiate on implicit or explicit feedbacks given on the items by the users. Their usual goal is to provide a top-n ranked list of non-interacted items to users. Recent advancements in neural generative models, especially in the multimedia domain, have justified increasing research effort on trying to translate these methods on the collaborative filtering setting, yet with debatable and sometimes unsatisfactory outcomes. Diffusion models, a class of generative models that are based on a two-step process that iteratively deteriorates the input and then learns to recover it by inverting the chain, have recently demonstrated state-of-the-art performance on multimedia data. Successful mechanisms have also been put in place to guide the generative process via additional information. Very few preliminary research works have been published on the possibility to apply diffusion for collaborative filtering, and none of them experimented with conditional models. This thesis work introduces and evaluates simple and conditional diffusion models for collaborative filtering with implicit feedbacks for the top-n recommendation task. The tabular diffusion model formulation is expanded and adapted for the scope, and a novel guidance mechanism, called User factors guidance, is introduced, which conditions the generative posterior on latent factors coming from pre-trained matrix factorization models to steer the generative process towards relevant and diversified recommendations. The proposed methods are extensively tested on well-known and established datasets via a specific tailor-made experimental protocol. The obtained results demonstrate the effectiveness of simple and conditional diffusion models on the recommendation task when used both individually, and alongside other cutting-edge models.
I sistemi di raccomandazione, sistemi di recupero delle informazioni che forniscono suggerimenti su elementi o contenuti interessanti agli utenti, sono oggigiorno onnipresenti poiché i cataloghi delle applicazioni online stanno diventando estremamente vasti ed è difficile interagirvi in modi non personalizzati. I moderni sistemi di raccomandazione si basano su tecniche di filtraggio collaborativo, che forniscono suggerimenti sfruttando pattern che vengono automaticamente identificati nelle interazioni passate degli utenti, tramite feedback impliciti o espliciti forniti dagli utenti. Il loro obiettivo è generalmente quello di fornire a ogni utente un elenco dei primi n elementi non ancora interagiti. Recenti progressi nei modelli generativi neurali, soprattutto con dati multimediali, hanno comportato un crescente impegno di ricerca volto a tradurre questi metodi nel filtraggio collaborativo, ma con risultati discutibili e talvolta insoddisfacenti. I modelli di diffusione, una classe di modelli generativi basati su un processo in due fasi che deteriora iterativamente l’input e poi impara a recuperarlo invertendo la procedura, hanno recentemente dimostrato prestazioni all’avanguardia sui dati multimediali. Sono stati inoltre applicati con successo meccanismi per guidare il processo generativo attraverso informazioni aggiuntive. Pochi lavori di ricerca preliminari hanno valutato la possibilità di applicare tali modelli per il filtraggio collaborativo, e in nessuno di essi sono stati utilizzati modelli di diffusione condizionati. Questo lavoro di tesi introduce e valuta modelli di diffusione semplici e condizionati per il filtraggio collaborativo con feedback impliciti per il task di raccomandazione top-n. La formulazione del modello di diffusione su dati tabulari viene ampliata e adattata allo scopo e viene introdotto un nuovo meccanismo che condiziona il posterior sui fattori latenti provenienti da modelli di matrix factorization pre-addestrati, al fine di indirizzare il processo generativo verso raccomandazioni rilevanti e diversificate. I metodi proposti sono ampiamente testati, su dataset noti e consolidati, tramite uno specifico protocollo sperimentale. I risultati ottenuti dimostrano l’efficacia dei modelli di diffusione, sia semplici che condizionati, sul task di raccomandazione, sia se adottati individualmente, sia in cooperazione con altri modelli all’avanguardia.
Personalized conditional diffusion with user factors guidance for collaborative filtering
Lentini, Andrea
2022/2023
Abstract
Recommender systems, information retrieval systems that provide suggestions of interesting items or content to users, are nowadays ubiquitous as catalogs in online applications are becoming extremely vast and difficult to interact with in non-personalized ways. Modern recommendation engines are based on collaborative filtering techniques, that provide suggestions by exploiting patterns that are automatically identified on past user interactions, which substantiate on implicit or explicit feedbacks given on the items by the users. Their usual goal is to provide a top-n ranked list of non-interacted items to users. Recent advancements in neural generative models, especially in the multimedia domain, have justified increasing research effort on trying to translate these methods on the collaborative filtering setting, yet with debatable and sometimes unsatisfactory outcomes. Diffusion models, a class of generative models that are based on a two-step process that iteratively deteriorates the input and then learns to recover it by inverting the chain, have recently demonstrated state-of-the-art performance on multimedia data. Successful mechanisms have also been put in place to guide the generative process via additional information. Very few preliminary research works have been published on the possibility to apply diffusion for collaborative filtering, and none of them experimented with conditional models. This thesis work introduces and evaluates simple and conditional diffusion models for collaborative filtering with implicit feedbacks for the top-n recommendation task. The tabular diffusion model formulation is expanded and adapted for the scope, and a novel guidance mechanism, called User factors guidance, is introduced, which conditions the generative posterior on latent factors coming from pre-trained matrix factorization models to steer the generative process towards relevant and diversified recommendations. The proposed methods are extensively tested on well-known and established datasets via a specific tailor-made experimental protocol. The obtained results demonstrate the effectiveness of simple and conditional diffusion models on the recommendation task when used both individually, and alongside other cutting-edge models.File | Dimensione | Formato | |
---|---|---|---|
2023_Lentini_Andrea_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
2023_Lentini_Andrea_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
7.64 MB
Formato
Adobe PDF
|
7.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214249