This thesis presents an investigation into carbon dioxide (CO2) removal strategies, with detailed application to treat the gaseous stream of a steel plant. Rate-based simulations have been carried out for the design and the techno-economic optimization of the process of chemical absorption, employing an aqueous solution of monoethanolamine (MEA) 30% wt. as the solvent for CO2 capture in a steel plant with an annual production capacity of 6.6 million tons of steel and a comparison with a different technology, based on the use of polymeric membranes, has been performed. For the same CO2 removal, the alternative technology, though considered with a lower environmental impact, would have lower performances and higher costs, confirming that for high flowrates of gaseous streams the absorption process is to be preferred. Subsequently, the research for determining an innovative solvent mixture that could be considered an environmentally friendly alternative to MEA for application to CO2 absorption has been started. In detail, in this thesis the miscibility and the viscosity of several mixtures and the phase equilibrium of two selected mixtures, with the potential to be part of the innovative solvent, have been experimentally determined at the Process Thermodynamics laboratory of Politecnico di Milano.

Questa tesi presenta uno studio sui metodi di rimozione dell'anidride carbonica (CO2) con una dettagliata applicazione al trattamento del flusso gassoso di un impianto siderurgico. Sono state effettuate simulazioni rate-based per la progettazione e l'ottimizzazione tecno-economica del processo di assorbimento chimico, impiegando una soluzione acquosa di monoetanolammina (MEA) al 30% in peso come solvente per la cattura della CO2 in un impianto siderurgico con una produzione annua di 6,6 milioni di tonnellate di acciaio. Inoltre, è stato svolto un confronto con una tecnologia alternativa, basata sull'uso di membrane polimeriche. Per la stessa rimozione di CO2, la tecnologia alternativa, pur avendo un minore impatto ambientale, ha prestazioni inferiori e costi più elevati, confermando che per portate elevate di correnti gassose è preferibile il processo di assorbimento. Successivamente è stata avviata la ricerca per determinare un solvente innovativo che potrebbe essere considerato come un’alternativa ecologica alla MEA per l’assorbimento della CO2. In particolare, in questa tesi la miscibilità e la viscosità di diverse miscele e l'equilibrio di fase di due miscele selezionate, con il potenziale di essere parte del solvente innovativo, sono stati determinati sperimentalmente presso il Process Thermodynamics laboratory del Politecnico di Milano.

Techno-economic assessment of the CO2 removal section to reduce emissions in steel plants

Schiattarella, Valentina
2022/2023

Abstract

This thesis presents an investigation into carbon dioxide (CO2) removal strategies, with detailed application to treat the gaseous stream of a steel plant. Rate-based simulations have been carried out for the design and the techno-economic optimization of the process of chemical absorption, employing an aqueous solution of monoethanolamine (MEA) 30% wt. as the solvent for CO2 capture in a steel plant with an annual production capacity of 6.6 million tons of steel and a comparison with a different technology, based on the use of polymeric membranes, has been performed. For the same CO2 removal, the alternative technology, though considered with a lower environmental impact, would have lower performances and higher costs, confirming that for high flowrates of gaseous streams the absorption process is to be preferred. Subsequently, the research for determining an innovative solvent mixture that could be considered an environmentally friendly alternative to MEA for application to CO2 absorption has been started. In detail, in this thesis the miscibility and the viscosity of several mixtures and the phase equilibrium of two selected mixtures, with the potential to be part of the innovative solvent, have been experimentally determined at the Process Thermodynamics laboratory of Politecnico di Milano.
ING - Scuola di Ingegneria Industriale e dell'Informazione
19-dic-2023
2022/2023
Questa tesi presenta uno studio sui metodi di rimozione dell'anidride carbonica (CO2) con una dettagliata applicazione al trattamento del flusso gassoso di un impianto siderurgico. Sono state effettuate simulazioni rate-based per la progettazione e l'ottimizzazione tecno-economica del processo di assorbimento chimico, impiegando una soluzione acquosa di monoetanolammina (MEA) al 30% in peso come solvente per la cattura della CO2 in un impianto siderurgico con una produzione annua di 6,6 milioni di tonnellate di acciaio. Inoltre, è stato svolto un confronto con una tecnologia alternativa, basata sull'uso di membrane polimeriche. Per la stessa rimozione di CO2, la tecnologia alternativa, pur avendo un minore impatto ambientale, ha prestazioni inferiori e costi più elevati, confermando che per portate elevate di correnti gassose è preferibile il processo di assorbimento. Successivamente è stata avviata la ricerca per determinare un solvente innovativo che potrebbe essere considerato come un’alternativa ecologica alla MEA per l’assorbimento della CO2. In particolare, in questa tesi la miscibilità e la viscosità di diverse miscele e l'equilibrio di fase di due miscele selezionate, con il potenziale di essere parte del solvente innovativo, sono stati determinati sperimentalmente presso il Process Thermodynamics laboratory del Politecnico di Milano.
File allegati
File Dimensione Formato  
2023_12_Schiattarella_Executive_Summary.pdf

non accessibile

Descrizione: Executive Summary
Dimensione 909.82 kB
Formato Adobe PDF
909.82 kB Adobe PDF   Visualizza/Apri
2023_12_Schiattarella_Tesi.pdf

non accessibile

Descrizione: Thesis
Dimensione 9.22 MB
Formato Adobe PDF
9.22 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/214267