This Thesis presents an original methodology for characterizing energy consumption and local pollutants emissions at a street-scale level, surpassing the traditional focus on single routes. Multiple paths are meticulously analyzed, offering a comprehensive perspective of entire streets rather than isolated segments. The study begins with a micro-scale approach, extending its findings to the neighborhood level. Consumption and emission values are derived for reference hours, in off-peak and peak periods, considering the existing Portuguese vehicle ŕeet and three potential future scenarios. To achieve a detailed street description, specialized real-drive cycles are assembled using data from Google Maps’ and Open Street Map’s APIs. The vehicle-specific power methodology is applied to correlate drive cycle information with on-road measurements for various vehicle types, including internal combustion engine (ICE) gasoline and diesel, one hybrid electric vehicle (HEV), and one electric vehicle (EV). Street names linked to latitude and longitude coordinates, in conjunction with traffic data gathered during peak and off-peak hours, are integrated with drive cycle information. This integration facilitates the estimation of total energy consumption, as well as CO2, CO, NOx, and HC emissions for each street within a selected neighborhood in the Lisbon Metropolitan area. Furthermore, this study enables the evaluation of fleet evolution and electrification impact by comparing the current situation with three projected 2035 fleet mixes. Additionally, the Thesis explores the characterization of a photovoltaic-integrated electric vehicle (PVEV) and analyzes its impacts at a street-scale level. Finally, two scenarios related to the transition from conventional electric light-duty vehicles to photovoltaic counterparts, are examined comparing the neighborhood’s total energy consumption.
Questa Tesi presenta una metodologia originale per caratterizzare il consumo energetico e gli inquinanti locali emessi a livello di strada, superando il tradizionale focus sui singoli percorsi. Molteplici itinerari sono analizzati in modo da offrire una prospettiva completa dell’intera via invece che di singoli tratti. Lo studio parte con un approccio su microscala, i risultati vengono poi estesi a livello di quartiere. I valori di consumo ed emissioni sono derivati per ore di riferimento, in periodi di traffico lieve e intenso, considerando il parco veicoli Portoghese esistente e tre potenziali scenari futuri. Per ottenere una descrizione dettagliata delle strade, cicli di guida reali sono assemblati utilizzando dati provenienti dalle API di Google Maps e Open Street Map. La metodologia di potenza specifica del veicolo viene applicata per correlare le informazioni del ciclo di guida con le misurazioni su strada per vari tipi di veicoli, inclusi veicoli a motore a combustione interna a benzina e diesel, un veicolo ibrido elettrico e un veicolo elettrico. I nomi delle strade, legati alle coordinate di latitudine e longitudine, insieme ai dati sul traffico raccolti durante le ore di punta e fuori picco, vengono integrati con le informazioni sul ciclo di guida. Questa integrazione facilita la stima del consumo totale di energia, nonché delle emissioni di CO2, CO, NOx e HC per ciascuna strada all’interno di un quartiere selezionato nell’area metropolitana di Lisbona. Inoltre, questo studio consente la valutazione dell’evoluzione della flotta e dell’impatto dell’elettrificazione confrontando la situazione attuale con tre previsioni per il 2035. Inoltre, la Tesi esplora la caratterizzazione di un veicolo elettrico integrato con pannelli fotovoltaici e analizza i suoi impatti a livello di strada. Inoltre, vengono esaminati due scenari legati alla transizione dai veicoli leggeri elettrici convenzionali a quelli fotovoltaici, confrontando il consumo totale di energia del quartiere.
Assessment of energy environmental impacts of alternative technologies at street scale
Muscente, Gabriele
2022/2023
Abstract
This Thesis presents an original methodology for characterizing energy consumption and local pollutants emissions at a street-scale level, surpassing the traditional focus on single routes. Multiple paths are meticulously analyzed, offering a comprehensive perspective of entire streets rather than isolated segments. The study begins with a micro-scale approach, extending its findings to the neighborhood level. Consumption and emission values are derived for reference hours, in off-peak and peak periods, considering the existing Portuguese vehicle ŕeet and three potential future scenarios. To achieve a detailed street description, specialized real-drive cycles are assembled using data from Google Maps’ and Open Street Map’s APIs. The vehicle-specific power methodology is applied to correlate drive cycle information with on-road measurements for various vehicle types, including internal combustion engine (ICE) gasoline and diesel, one hybrid electric vehicle (HEV), and one electric vehicle (EV). Street names linked to latitude and longitude coordinates, in conjunction with traffic data gathered during peak and off-peak hours, are integrated with drive cycle information. This integration facilitates the estimation of total energy consumption, as well as CO2, CO, NOx, and HC emissions for each street within a selected neighborhood in the Lisbon Metropolitan area. Furthermore, this study enables the evaluation of fleet evolution and electrification impact by comparing the current situation with three projected 2035 fleet mixes. Additionally, the Thesis explores the characterization of a photovoltaic-integrated electric vehicle (PVEV) and analyzes its impacts at a street-scale level. Finally, two scenarios related to the transition from conventional electric light-duty vehicles to photovoltaic counterparts, are examined comparing the neighborhood’s total energy consumption.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Muscente.pdf
non accessibile
Dimensione
51.67 MB
Formato
Adobe PDF
|
51.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214324