The innovative field of Urban Air Mobility (UAM) vehicles is rapidly developing with the purpose of providing sustainable, convenient and time-saving transportation. Given their proposed operation within urban environments, one important concern is the level of noise these vehicles generate. The present thesis work deals with the study of the aerodynamic and aeroacoustic interaction of propellers with application to eVTOL aircraft. Research will focus on the comparison and validation of numerical mid-fidelity studies with respect to wind tunnel and high-fidelity numerical simulations (SU2) results on a propeller provided by DLR (German Aerospace Center). Studies include an isolated configuration and propeller-propeller interaction in tandem and coaxial configurations in different flight phases. To provide the aerodynamic data for noise calculation, a mid-fidelity tool, DUST, is used. Two different numerical models for aerodynamics are used for simulations: surface panels and vortex lattice, the latter includes the possibility of modeling viscous effects, and having an accurate approximation of aerodynamic loads and aeroacosutic footprint with lower computational cost. A Ffowcs Williams-Hawkings (FWH) equation solver, implemented in an SU2 dedicated branch, is used to compute the aeroacoustic footprint of the test case in different configurations. Results obtained with surface panels simulation have already been validated, while in the work of this thesis a contribution has been given to couple vortex lattice model with the aeroacoustic solver. The validation, based on high-fidelity experimental and numerical results, wants to highlight the suitability of the DUST mid-fidelity simulations for aeroacoustic investigation of propellers interaction in different configurations. This method would employ much lower computational cost with respect to high-fidelity CFD simulations, being useful especially for preliminary design phases of UAM vehicles. The work of this thesis is part of the GARTEUR Action Group HC/AG-26 project, comparison with aerodynamics and aeroacoustics results of other partners simulations are provided, both high and mid-fidelity, respectively IAG-FLOWer and DLR-UPM.
La ricerca e l’innovazione nel settore aeronautico hanno portato allo sviluppo di veicoli per la Mobilità Aerea Urbana (UAM) con l’obiettivo di fornire un trasporto sostenibile, comodo e risparmio di tempo. Dato l’obiettivo di operare all’interno degli ambienti urbani, una fonte di preoccupazione importante è il livello di rumore generato da questi veicoli. La tesi in oggetto si occupa dello studio dell’interazione aerodinamica e aeroacustica delle eliche di rotori con applicazione agli aeromobili eVTOL. La ricerca si concentrerà sul confronto e la validazione di modelli numerici di media fedeltà a confronto con risultati di prove in galleria del vento e simulazioni numeriche ad alta fedeltà (SU2) su un’elica fornita dal DLR (Centro Aerospaziale Tedesco). Gli studi includono una configurazione isolata e l’interazione rotore-rotore in configurazioni tandem e coassiali in diverse fasi di volo. Gli input aerodinamici necessari al calcolo del rumore, vengono calcolati con DUST, un programma di media fedeltà. Nelle simulazioni vengono utilizzati due diversi modelli numerici per l’aerodinamica: a pannelli e vortex lattice, quest’ultimo prevede la possibilità di modellare gli effetti viscosi ed ottenere un’approssimazione più dettagliata dei carichi aerodinamici e dell’aeroacustica con un costo computazionale inferiore. Un solutore dell’equazione di Ffowcs Williams-Hawkings (FWH), implementato in SU2, viene utilizzato per calcolare l’impronta aeroacustica in diverse configurazioni. I risultati ottenuti con la simulazione a pannelli sono già stati validati, mentre nel lavoro di questa tesi è stato apportato un contributo per accoppiare il modello vortex lattice con il solutore aeroacustico. La validazione, basata su risultati sperimentali e numerici ad alta fedeltà, mira a evidenziare l’affidabilità delle simulazioni di media fedeltà DUST per l’indagine aeroacustica dell’interazione tra eliche in diverse configurazioni. Questo metodo comporta un costo computazionale molto inferiore rispetto alle simulazioni CFD ad alta fedeltà, risultando particolarmente utile soprattutto per le fasi di progettazione preliminare dei veicoli per la mobilità aerea ubrana. Il lavoro di questa tesi si inserisce nel progetto GARTEUR Action Group HC/AG-26, sono perciò inseriti confronti con i risultati aerodinamici e aeroacustici ottenuti con diversi modelli numerici, sia a media che alta fedeltà, rispettivamente IAG-FLOWEer e DLR-UPM.
Mid-fidelity numerical approach to aeroacoustic investigation of tandem propellers
Oberti, Niccolò
2022/2023
Abstract
The innovative field of Urban Air Mobility (UAM) vehicles is rapidly developing with the purpose of providing sustainable, convenient and time-saving transportation. Given their proposed operation within urban environments, one important concern is the level of noise these vehicles generate. The present thesis work deals with the study of the aerodynamic and aeroacoustic interaction of propellers with application to eVTOL aircraft. Research will focus on the comparison and validation of numerical mid-fidelity studies with respect to wind tunnel and high-fidelity numerical simulations (SU2) results on a propeller provided by DLR (German Aerospace Center). Studies include an isolated configuration and propeller-propeller interaction in tandem and coaxial configurations in different flight phases. To provide the aerodynamic data for noise calculation, a mid-fidelity tool, DUST, is used. Two different numerical models for aerodynamics are used for simulations: surface panels and vortex lattice, the latter includes the possibility of modeling viscous effects, and having an accurate approximation of aerodynamic loads and aeroacosutic footprint with lower computational cost. A Ffowcs Williams-Hawkings (FWH) equation solver, implemented in an SU2 dedicated branch, is used to compute the aeroacoustic footprint of the test case in different configurations. Results obtained with surface panels simulation have already been validated, while in the work of this thesis a contribution has been given to couple vortex lattice model with the aeroacoustic solver. The validation, based on high-fidelity experimental and numerical results, wants to highlight the suitability of the DUST mid-fidelity simulations for aeroacoustic investigation of propellers interaction in different configurations. This method would employ much lower computational cost with respect to high-fidelity CFD simulations, being useful especially for preliminary design phases of UAM vehicles. The work of this thesis is part of the GARTEUR Action Group HC/AG-26 project, comparison with aerodynamics and aeroacoustics results of other partners simulations are provided, both high and mid-fidelity, respectively IAG-FLOWer and DLR-UPM.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Oberti_Executive_Summary_02.pdf
Open Access dal 23/11/2024
Descrizione: Testo Executive Summary
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
2023_12_Oberti_Tesi_01.pdf
Open Access dal 23/11/2024
Descrizione: Testo della Tesi
Dimensione
9.74 MB
Formato
Adobe PDF
|
9.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214464