This study is devoted to the energy optimization of buildings and focuses in particular on the performance gap between the consumption predicted during design phase and the one actually measured. The ultimate goal is to create an advanced “Digital Twin” model that accurately reflects the real behavior of the building. The methodology adopted was described including the use of the IES VE software for the modelling and simulation of the office complex in Milan under study. The analysis started with a simplified approach on a floor type plan to obtain preliminary estimates of consumption in different scenarios. Subsequently, a comprehensive model was developed with a focus on HVAC systems to compare real data with those estimated through modelling. In the first step, the simplified model emphasized a significant influence of climatic and operational conditions, showing, in a projection to 2050, a 11% increase in total energy needs (+19% in cooling demand and -43% in heating demand). On the other hand, the actual conditions outlined a 34% increase in total energy needs compared to the initial model (+32% in cooling demand and +47% in heating demand). The object of this study was therefore to develop and implement specific tuning scenarios that took into account the real use of the building during operation in order to reduce the substantial gap between the consumption predicted by the complete base model and that actually recorded by the BMS (-42% for HVAC consumption and +37% in internal electrical loads). Thanks to the methodology and models applied, it was possible to almost eliminate the gap between expected and actual results. In fact, the “Digital Twin” model developed in this study managed to limit the expected energy gap to +0.9% for HVAC and -2.4% in internal electrical loads. This advanced model will therefore be a valuable decision-making tool in terms of building efficiency and management by optimizing energy use and optimally anticipating actual operating needs.
Questo studio è dedicato all'ottimizzazione energetica degli edifici e si focalizza in particolare sul divario prestazionale tra i consumi previsti durante la progettazione e quelli effettivamente registrati. L'obiettivo finale è creare un modello avanzato "Digital Twin" che rifletta in maniera accurata il comportamento reale. La metodologia adottata è stata sviluppata includendo anche l'uso del software IES VE per la modellizzazione e la simulazione del complesso per uffici a Milano oggetto dello studio. L’analisi è iniziata con un approccio semplificato su un “piano tipo” per ottenere stime preliminari dei consumi nei diversi scenari. Successivamente, è stato sviluppato un modello completo con particolare attenzione ai sistemi HVAC per confrontare i dati reali con quelli stimati attraverso la modellizzazione. Nella prima fase, il modello semplificato evidenziava un'influenza significativa delle condizioni climatiche e operative rilevando, in una proiezione al 2050, un aumento del 11% nei bisogni energetici totali (+19% nella richiesta di raffrescamento e -43% nella richiesta di riscaldamento). Le condizioni reali segnalavano invece un aumento del 34% nei bisogni energetici totali rispetto al modello iniziale (+32% nella richiesta di raffrescamento e +47% nella richiesta di riscaldamento). L’oggetto di questo studio è stato quindi quello di ideare ed implementare specifici scenari di calibrazione che tenessero in conto del reale utilizzo dell’edificio in fase d’esercizio in modo da ridurre il notevole divario tra i consumi previsti dal modello base completo e quelli effettivamente registrati dal BMS (-42% per i consumi HVAC e +37% nei carichi elettrici interni). Grazie alla metodologia e ai modelli applicati è stato possibile quindi quasi azzerare il divario tra i risultati attesi e quelli reali. Il “Digital Twin model” elaborato in questo studio è riuscito infatti a limitare il divario energetico atteso allo +0.9% per la voce HVAC e al -2.4% nei carichi elettrici interni. Questo modello avanzato potrà essere dunque un utile strumento decisionale sul fronte dell’efficienza e della gestione dell’edificio ottimizzando l’uso dell’energia e anticipando in maniera ottimale i bisogni reali d’esercizio.
Energy performance gap evaluation for buildings' optimization during operational phase using digital twin approach
PALOCCI, ELISA
2022/2023
Abstract
This study is devoted to the energy optimization of buildings and focuses in particular on the performance gap between the consumption predicted during design phase and the one actually measured. The ultimate goal is to create an advanced “Digital Twin” model that accurately reflects the real behavior of the building. The methodology adopted was described including the use of the IES VE software for the modelling and simulation of the office complex in Milan under study. The analysis started with a simplified approach on a floor type plan to obtain preliminary estimates of consumption in different scenarios. Subsequently, a comprehensive model was developed with a focus on HVAC systems to compare real data with those estimated through modelling. In the first step, the simplified model emphasized a significant influence of climatic and operational conditions, showing, in a projection to 2050, a 11% increase in total energy needs (+19% in cooling demand and -43% in heating demand). On the other hand, the actual conditions outlined a 34% increase in total energy needs compared to the initial model (+32% in cooling demand and +47% in heating demand). The object of this study was therefore to develop and implement specific tuning scenarios that took into account the real use of the building during operation in order to reduce the substantial gap between the consumption predicted by the complete base model and that actually recorded by the BMS (-42% for HVAC consumption and +37% in internal electrical loads). Thanks to the methodology and models applied, it was possible to almost eliminate the gap between expected and actual results. In fact, the “Digital Twin” model developed in this study managed to limit the expected energy gap to +0.9% for HVAC and -2.4% in internal electrical loads. This advanced model will therefore be a valuable decision-making tool in terms of building efficiency and management by optimizing energy use and optimally anticipating actual operating needs.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Palocci.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214467