Cold Spray is a promising technique with key applications in coating, repair, and additive manufacturing. This technology involves depositing powder materials at supersonic speeds and temperatures below the melting point based on severe plastic deformation of powder particles. By modelling and simulation of the powder deposition process, further improvements can be obtained in the technology. However, data on the thermo-mechanical properties of commercial powders is limited, and constitutive material models based on bulk materials often prove inadequate in describing powder particle’s deformation behavior. The lack of a standardized procedure for the mechanical characterization of particles is evident in the literature. This study proposes a hybrid approach that combines experimental micro-compression tests on 316L stainless steel particles with numerical analyses based on finite element (FE) models. Using the Kriging meta-model, the parameters of the Johnson-Cook (JC) constitutive model were optimized to predict the mechanical behavior of particles within FE simulations. Experimental impact tests at speeds similar to those of Cold Spray were conducted using the LASHPOL (LAser SHock POwder Launcher) experimental apparatus. A method is proposed to assess the adequacy of constitutive models, optimized for micro-compression tests, in predicting deformation during impacts. For this purpose, FE simulations using the CEL (Coupled Eulerian-Lagrangian) approach were combined with profilometric analyses on LASHPOL test samples. The results highlight the potential of the proposed procedure in studying the mechanical behavior of particles. It was found that there is no unique constitutive model parameter set that could accurately describe the mechanical behavior of different-sized particles at various strain rates. Nevertheless, a potential correlation between the material constitutive parameters and particle size was identified, which requires further validation in the future with a larger population of statistical cases. Furthermore, it was found that an optimized set of constitutive parameters based on micro-compression tests can reasonably predict the deformation exhibited by the particles studied in LASHPOL tests. This finding suggests that, despite its simplicity, the JC constitutive model may perform quite well even at high strain rates, when an appropriate experimental and numerical framework is used.
Il Cold Spray è una promettente tecnica con applicazioni chiave nella deposizione di rivestimenti, riparazione di componenti e additive manufacturing. Questa tecnologia impiega polveri depositate a velocità supersoniche e temperature inferiori al punto di fusione. Tuttavia, le informazioni sulle proprietà termo-meccaniche delle polveri commerciali sono limitate, e i modelli costitutivi basati sui materiali "bulk" sono spesso inadatti a descriverne il comportamento. La mancanza di una procedura standard per la caratterizzazione meccanica delle particelle è evidente in letteratura. Questo studio propone un approccio ibrido che combina test sperimentali di micro-compressione su particelle di acciaio inox 316L con analisi numeriche basate su modelli FEM. Utilizzando il meta-modello Kriging, si ottimizzano i parametri del modello costitutivo Johnson-Cook per predire il comportamento meccanico delle particelle all’interno delle simulazioni FEM. Attraverso il dispositivo LASHPOL (LAser SHock POwder Launcher), sono stati condotti test sperimentali di impatto a velocità simili a quelle del Cold Spray. Si propone un metodo per valutare l'adeguatezza dei modelli costitutivi, ottimizzati sui test di micro-compressione, nella previsione della deformazione durante gli impatti. A tal fine, simulazioni FEM con approccio CEL (Coupled Eulerian-Lagrangian) sono integrate con analisi profilometriche sui campioni dei test LASHPOL. I risultati mettono in evidenza il potenziale della procedura proposta nello studio del comportamento meccanico delle particelle. È emerso che non sembri esistere un modello costitutivo universalmente valido in grado di definire con precisione il comportamento meccanico di tutte le particelle. Nonostante ciò, è stata individuata una possibile correlazione tra i parametri costitutivi del materiale e la dimensione delle particelle, la quale necessita di ulteriori conferme in futuro attraverso l’analisi di una più ampia popolazione di casi statistici. Inoltre, è emerso che un set ottimizzato di parametri costitutivi, basato su test di micro-compressione, è in grado di predire con buona approssimazione la deformazione mostrata dalle particelle studiate nei test LASHPOL. Questo risultato suggerisce che, nonostante la sua semplicità, il modello costitutivo JC potrebbe essere applicabile anche a velocità di deformazione elevate.
Investigating the mechanical behavior of 316L powder particles during cold spray deposition
Badino, Alessandro
2022/2023
Abstract
Cold Spray is a promising technique with key applications in coating, repair, and additive manufacturing. This technology involves depositing powder materials at supersonic speeds and temperatures below the melting point based on severe plastic deformation of powder particles. By modelling and simulation of the powder deposition process, further improvements can be obtained in the technology. However, data on the thermo-mechanical properties of commercial powders is limited, and constitutive material models based on bulk materials often prove inadequate in describing powder particle’s deformation behavior. The lack of a standardized procedure for the mechanical characterization of particles is evident in the literature. This study proposes a hybrid approach that combines experimental micro-compression tests on 316L stainless steel particles with numerical analyses based on finite element (FE) models. Using the Kriging meta-model, the parameters of the Johnson-Cook (JC) constitutive model were optimized to predict the mechanical behavior of particles within FE simulations. Experimental impact tests at speeds similar to those of Cold Spray were conducted using the LASHPOL (LAser SHock POwder Launcher) experimental apparatus. A method is proposed to assess the adequacy of constitutive models, optimized for micro-compression tests, in predicting deformation during impacts. For this purpose, FE simulations using the CEL (Coupled Eulerian-Lagrangian) approach were combined with profilometric analyses on LASHPOL test samples. The results highlight the potential of the proposed procedure in studying the mechanical behavior of particles. It was found that there is no unique constitutive model parameter set that could accurately describe the mechanical behavior of different-sized particles at various strain rates. Nevertheless, a potential correlation between the material constitutive parameters and particle size was identified, which requires further validation in the future with a larger population of statistical cases. Furthermore, it was found that an optimized set of constitutive parameters based on micro-compression tests can reasonably predict the deformation exhibited by the particles studied in LASHPOL tests. This finding suggests that, despite its simplicity, the JC constitutive model may perform quite well even at high strain rates, when an appropriate experimental and numerical framework is used.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Badino_Executive Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
2023_12_Badino_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
8.62 MB
Formato
Adobe PDF
|
8.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214509