The new generation of biomaterials able to incorporate drugs for in situ release after implantation is important in many pharmaceutical and biomedical applications. Several drugs show problems of solubilization, diffusion through biological barriers, and the control of local administration is crucial to avoid cytotoxic effects. Molecular Mechanics (MM) and Molecular Dynamics (MD) simulations are a useful tool to investigate drug and biomaterial interactions at atomistic level. In this work the interaction between quercetin molecule, a flavonoid drug studied for its anti-inflammatory, antioxidant and anticancer properties, and the amorphous SiO2 surface terminated with silanol groups is studied using a simulation protocol proposed in previous work. The protocol adopted in this study provides i) the initial energy minimization, ii) MD runs until the equilibrium state was achieved iii) final geometry optimizations of the final configuration assumed by the system at the end of MD run. These simulations are performed using the Consistent Valence Force Field (CVFF) and Materials Studio packages. At first the conformational study of quercetin single molecule has been performed. Afterwards, the adsorption process of single quercetin molecule on the amorphous SiO2 surface has been studied starting from four different initial arrangements near the solid surface, considering the periodic boundary conditions. After the energy minimizations of four different initial geometries and four MD simulations at room temperature, in the final adsorption stage the quercetin molecules display favorable intermolecular interactions in the adsorption process due to hydrogen bonds between drug and SiO2 surface. The same simulation protocol is applied to study two different drug concentrations near silica surface. During the MD run, the adsorption process in presence of water molecules and after drying are investigated. The theoretical results will be compared to the experimental data obtained from Fourier Transform Infrared Spectroscopy (FT-IR) related to quercetin molecules entrapped in a silica matrix obtained via Sol–Gel method. Interesting comparisons between theoretical data and experimental results are highlighted.
La nuova generazione di materiali capaci di incorporare farmaci per il rilascio in situ post impianto riveste una grande importanza in molte applicazioni farmaceutiche e biomedicali. Diversi farmaci mostrano problemi di solubilizzazione, diffusione attraverso le barriere biologiche, e il controllo della somministrazione locale è cruciale per evitare possibili effetti citotossici. Le simulazioni di Meccanica Molecolare (MM) e Dinamica Molecolare (MD) rappresentano uno strumento utile per investigare le interazioni tra farmaco e biomateriale a livello atomistico. In questo lavoro è stata studiata l’interazione tra la quercetina, un flavonoide noto per le sue proprietà antiinfiammatorie, antiossidanti e antitumorali, e una superficie amorfa di SiO2 caratterizzata da gruppi silanolici, tramite un protocollo di simulazione proposto in studi precedenti. Il protocollo adottato include i) un’iniziale minimizzazione dell’energia, ii) simulazioni MD fino al raggiungimento dello stato di equilibrio, e iii) ottimizzazione finale della configurazione assunta dal sistema alla fine della simulazione MD. Queste simulazioni sono state eseguite applicando come campo di forze il Costant Valence Force Field (CVFF), e il software Materials Studio. Inizialmente, è stato svolto uno studio conformazionale della singola molecola di quercetina. Successivamente, il processo di adsorbimento sulla superficie amorfa di SiO2 è stato studiato partendo da quattro diverse disposizioni iniziali della singola molecola rispetto alla superficie, considerando condizioni periodiche al contorno. Dopo le minimizzazioni di energia iniziali relative alle quattro geometrie di partenza, e le relative simulazioni di MD eseguite a temperatura ambiente, le molecole di quercetina mostrano interazioni intermolecolari favorevoli nel processo di adsorbimento grazie ai legami a ponte di idrogeno tra il farmaco e la superficie di SiO2. Lo stesso protocollo di simulazione è stato applicato per studiare due diverse concentrazioni di farmaco vicino alla superficie di silice. Durante l’esecuzione di simulazioni MD, il processo di adsorbimento in presenza di molecole d’acqua e dopo essiccamento sono studiati. Questi risultati teorici verranno confrontati con i dati sperimentali ottenuti tramite Spettroscopia Infrarossa a Trasformata di Fourier (FT-IR) relativi a molecole di quercetina intrappolate in una matrice di silice ottenuta mediante il metodo Sol-Gel. Saranno messi in evidenza interessanti riscontri tra i risultati teorici e i dati sperimentali.
Intermolecular interactions between quercetin molecules and SiO2 surface for biomedical applications
Pirozzi, Pasqualina
2022/2023
Abstract
The new generation of biomaterials able to incorporate drugs for in situ release after implantation is important in many pharmaceutical and biomedical applications. Several drugs show problems of solubilization, diffusion through biological barriers, and the control of local administration is crucial to avoid cytotoxic effects. Molecular Mechanics (MM) and Molecular Dynamics (MD) simulations are a useful tool to investigate drug and biomaterial interactions at atomistic level. In this work the interaction between quercetin molecule, a flavonoid drug studied for its anti-inflammatory, antioxidant and anticancer properties, and the amorphous SiO2 surface terminated with silanol groups is studied using a simulation protocol proposed in previous work. The protocol adopted in this study provides i) the initial energy minimization, ii) MD runs until the equilibrium state was achieved iii) final geometry optimizations of the final configuration assumed by the system at the end of MD run. These simulations are performed using the Consistent Valence Force Field (CVFF) and Materials Studio packages. At first the conformational study of quercetin single molecule has been performed. Afterwards, the adsorption process of single quercetin molecule on the amorphous SiO2 surface has been studied starting from four different initial arrangements near the solid surface, considering the periodic boundary conditions. After the energy minimizations of four different initial geometries and four MD simulations at room temperature, in the final adsorption stage the quercetin molecules display favorable intermolecular interactions in the adsorption process due to hydrogen bonds between drug and SiO2 surface. The same simulation protocol is applied to study two different drug concentrations near silica surface. During the MD run, the adsorption process in presence of water molecules and after drying are investigated. The theoretical results will be compared to the experimental data obtained from Fourier Transform Infrared Spectroscopy (FT-IR) related to quercetin molecules entrapped in a silica matrix obtained via Sol–Gel method. Interesting comparisons between theoretical data and experimental results are highlighted.File | Dimensione | Formato | |
---|---|---|---|
2023_12_PIROZZI_Tesi_01.pdf
non accessibile
Descrizione: Tesi di Laurea Magistrale in Ingegneria Biomedica
Dimensione
25.53 MB
Formato
Adobe PDF
|
25.53 MB | Adobe PDF | Visualizza/Apri |
2023_12_PIROZZI_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary di Tesi LM in Ingegneria Biomedica
Dimensione
13.71 MB
Formato
Adobe PDF
|
13.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214583