This study focuses on the design, optimization, and application of readout electronics tailored for Short-Wave Infrared (SWIR) Single-Photon Avalanche Diodes (SPADs). The research explores advancements in readout circuitry to enhance the capabilities of SWIR SPADs for applications such as LIDAR (Light Detection and Ranging) and Non-Line-of-Sight (NLOS) imaging. In particular, NLOS imaging represents a cutting-edge field within optical sensing and imaging technologies, addressing challenges associated with imaging scenarios where direct line-of-sight visibility is obstructed. Applications of NLOS imaging span various domains, including autonomous vehicles, surveillance, search and rescue operations, medical imaging, and augmented reality. SWIR SPADs operate in the short-wave infrared spectrum, ranging from 1000 to 2000 nanometers. This wavelength range allows them to capture details that are not visible in the traditional visible spectrum and they are able to achieve longer detection ranges compared to Silicon-SPAD based systems. Furthermore, they offer several advantages in applications such as LIDAR and NLOS imaging: SWIR wavelengths are less affected by atmospheric conditions, such as fog, haze, and dust, making them suitable to work in challenging environmental conditions. Additionally, SWIR light interacts differently with materials compared to visible light, thus they are capable of providing information about material composition, making them valuable in applications like material identification, quality control, and chemical analysis. At last, infrared light is safer for human eyes compared to lasers operating in the visible spectrum, making the system more suitable for applications where eye safety is a critical concern. The goal of this master thesis’s work is to leverage SPADs’ time-gating capabilities to develop a single-pixel SWIR SPAD Readout Integrated-Circuit (ROIC) for SWIR NLOS Imaging. Focused on the requirements of the “ENLIGHTEN” project, funded by the European Commission, the work emphasizes swift SPAD quenching, low power consumption and high precision Time-of-Flight (ToF) measurement of single photons. The thesis begins in Chapter 1 and Chapter 2, with an in-depth analysis of the fundamental principles governing SWIR SPADs and the specific requirements of readout electronics to harness their full potential. In Chapter 3, through systematic design and simulation, novel readout architectures are developed to overcome limitations associated with traditional readout circuits, enabling efficient photon detection and accurate time-stamping. Lastly, in Chapter 4 and Chapter 5, after a brief introduction on the state-of-the-art of Time to Digital Converters (TDCs) in imaging applications such as LIDAR and NLOS, a dual-path TDC based on Gated Ring Oscillator is presented, which is able to achieve high resolution ToF measurement of the single photons. An on-chip wide-tuning range Phase-Locked-Loop (PLL) based structure is harnessed to generate a stable and reliable control voltage fed to the TDC. In Chapter 6 the overall performances of the timing system introduced in the previous two chapters is presented. The designed ASIC is fabricated through a 110 nm CMOS technology by LFoundry.
Questa tesi si concentra sulla progettazione, ottimizzazione e applicazione di elettronica di lettura progettata su misura per i fotodiodi a valanga a singolo fotone (SPAD) nell'infrarosso a onda corta (SWIR). La ricerca esplora i progressi nei circuiti di lettura per migliorare le capacità dei fotodiodi SWIR SPAD per applicazioni come il LIDAR (Light Detection and Ranging) e Non-line-of-Sight imaging (NLOS). In particolare, l'imaging NLOS rappresenta un campo all'avanguardia nelle tecnologie ottiche di rivelamento, per affrontare le sfide di imaging in scenari in cui la visibilità diretta è ostruita. Le applicazioni del NLOS spaziano in vari settori, tra cui la guida autonoma di veicoli, la sorveglianza, le operazioni di ricerca e soccorso, l’imaging medico e la realtà aumentata. I fotodiodi SWIR operano nello spettro dell'infrarosso a onda corta, tipicamente compreso tra 1000 e 2000 nanometri. Questo intervallo di lunghezze d'onda consente loro di catturare dettagli non visibili nello spettro visibile tradizionale e di raggiungere distanze di rivelamento più lunghe rispetto ad alcuni sistemi tradizionali basati su SPAD in silicio, offrendo inoltre diversi vantaggi in applicazioni come LIDAR e imaging NLOS. Le lunghezze d'onda SWIR sono meno influenzate dalle condizioni atmosferiche, come nebbia, foschia e polvere, rendendole adatte a lavorare in condizioni ambientali avverse. Inoltre, fotoni SWIR interagiscono in modo diverso con i materiali rispetto a fotoni nel visibile, quindi sono in grado di fornire informazioni sulla composizione dei materiali, rendendoli preziosi in applicazioni come l'identificazione dei materiali, il controllo qualità e l'analisi chimica. Infine, la luce infrarossa è più sicura per gli occhi umani rispetto ai laser che operano nello spettro visibile, rendendo il sistema più adatto per applicazioni in cui la sicurezza degli occhi è una preoccupazione critica. L'obiettivo del lavoro di questa tesi magistrale è sfruttare le capacità di time-gating dei SPAD per sviluppare un circuito integrato di lettura (ROIC) a singolo pixel per l'imaging SWIR NLOS. Concentrandosi sui requisiti del progetto "ENLIGHTEN", finanziato dalla Commissione Europea, il lavoro si concentra sul quenching rapido dello SPAD, il basso consumo energetico e la misurazione ad alta precisione del tempo di volo (ToF) dei fotoni in arrivo. Nel Capitolo 1 e nel Capitolo 2, la tesi inizia con un'analisi approfondita dei principi fondamentali che governano i fotodiodi SWIR SPAD e i requisiti specifici dell'elettronica di lettura per sfruttare appieno il loro potenziale. Nel Capitolo 3, attraverso una fase di progettazione e simulazione, vengono sviluppate nuove architetture di lettura per superare le limitazioni associate ai circuiti di lettura tradizionali, consentendo una rivelazione efficiente dei fotoni e un time-stamping preciso. Infine, nel Capitolo 4 e nel Capitolo 5, dopo una breve introduzione allo stato dell'arte dei convertitori tempo-digitale (TDC) nelle applicazioni di imaging come LIDAR e NLOS, viene presentato un TDC basato su un dual-path Gated Ring Oscillator per ottenere una misurazione ad alta risoluzione del ToF dei fotoni in arrivo. Una struttura basata su Phase-Locked-Loop (PLL), con ampio tuning-range, su chip viene sfruttata per generare una tensione di controllo stabile e affidabile fornita al TDC. Nel Capitolo 6 vengono presentate le prestazioni complessive del sistema introdotto nei due capitoli precedenti. L'ASIC progettato è realizzato attraverso una tecnologia CMOS da 110 nm.
Short-wave infrared SPAD readout IC for Non-Line-of-Sight Imaging
Tosti, Daniele
2022/2023
Abstract
This study focuses on the design, optimization, and application of readout electronics tailored for Short-Wave Infrared (SWIR) Single-Photon Avalanche Diodes (SPADs). The research explores advancements in readout circuitry to enhance the capabilities of SWIR SPADs for applications such as LIDAR (Light Detection and Ranging) and Non-Line-of-Sight (NLOS) imaging. In particular, NLOS imaging represents a cutting-edge field within optical sensing and imaging technologies, addressing challenges associated with imaging scenarios where direct line-of-sight visibility is obstructed. Applications of NLOS imaging span various domains, including autonomous vehicles, surveillance, search and rescue operations, medical imaging, and augmented reality. SWIR SPADs operate in the short-wave infrared spectrum, ranging from 1000 to 2000 nanometers. This wavelength range allows them to capture details that are not visible in the traditional visible spectrum and they are able to achieve longer detection ranges compared to Silicon-SPAD based systems. Furthermore, they offer several advantages in applications such as LIDAR and NLOS imaging: SWIR wavelengths are less affected by atmospheric conditions, such as fog, haze, and dust, making them suitable to work in challenging environmental conditions. Additionally, SWIR light interacts differently with materials compared to visible light, thus they are capable of providing information about material composition, making them valuable in applications like material identification, quality control, and chemical analysis. At last, infrared light is safer for human eyes compared to lasers operating in the visible spectrum, making the system more suitable for applications where eye safety is a critical concern. The goal of this master thesis’s work is to leverage SPADs’ time-gating capabilities to develop a single-pixel SWIR SPAD Readout Integrated-Circuit (ROIC) for SWIR NLOS Imaging. Focused on the requirements of the “ENLIGHTEN” project, funded by the European Commission, the work emphasizes swift SPAD quenching, low power consumption and high precision Time-of-Flight (ToF) measurement of single photons. The thesis begins in Chapter 1 and Chapter 2, with an in-depth analysis of the fundamental principles governing SWIR SPADs and the specific requirements of readout electronics to harness their full potential. In Chapter 3, through systematic design and simulation, novel readout architectures are developed to overcome limitations associated with traditional readout circuits, enabling efficient photon detection and accurate time-stamping. Lastly, in Chapter 4 and Chapter 5, after a brief introduction on the state-of-the-art of Time to Digital Converters (TDCs) in imaging applications such as LIDAR and NLOS, a dual-path TDC based on Gated Ring Oscillator is presented, which is able to achieve high resolution ToF measurement of the single photons. An on-chip wide-tuning range Phase-Locked-Loop (PLL) based structure is harnessed to generate a stable and reliable control voltage fed to the TDC. In Chapter 6 the overall performances of the timing system introduced in the previous two chapters is presented. The designed ASIC is fabricated through a 110 nm CMOS technology by LFoundry.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Tosti.pdf
non accessibile
Descrizione: Tesi
Dimensione
11.34 MB
Formato
Adobe PDF
|
11.34 MB | Adobe PDF | Visualizza/Apri |
2023_12_Tosti_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214640