In the current global context, characterized by the urgent quest for sustainable energy solutions to address the escalating challenges posed by climate change and geopolitical dynamics, two cutting-edge technologies have garnered attention: Vertical Axis Wind Turbines (VAWTs) and Airborne Wind Energy Systems (AWEs). Particularly, Vertical Axis Wind Turbines stand out, with their distinctive design compared to horizontal axis counterparts (HAWTs), as promising options due to their remarkable adaptability to varying wind directions. This feature, coupled with their capacity to operate effectively in low wind speed conditions, establishes them as viable options for both urban applications and large-scale projects. In this scenario, AGILE WIND POWER has emerged as a prominent producer of large-scale VAWTs in Switzerland, notably featuring the pitch-controlled VAWT Vertical Sky A32 turbine. However, the initial tests conducted on the first prototype of this machine unveiled anomalous aerodynamic behavior in the connection zone between the blades and the rotor arm, thereby compromising the overall aerodynamic efficiency of the system. This thesis aims to investigate, through a rigorous scientific method, the observed anomalous behavior, understanding its root causes and subsequently proposing effective solutions to mitigate this issues. Through this investigation, the ultimate goal is to propose a resolution to the issue of aerodynamic interference that may arise in the connection between the blade and rotor arm of VAWT. Conducted in collaboration with the Swiss University ZHAW and AGILE WIND POWER, this thesis employs a classical dual scientific approach. It integrates both experimental tests conducted in the ZHAW wind tunnel and Computational Fluid Dynamics (CFD) simulations implemented in ANSYS Fluent, offering a comprehensive and synergistic exploration of the aerodynamic challenges encountered in the Vertical Sky A32 turbine.
Nel contesto mondiale attuale, caratterizzato dall'impellente ricerca di soluzioni energetiche sostenibili per rispondere alle crescenti sfide imposte dai cambiamenti climatici e dai dinamismi politici, le turbine eoliche ad asse verticale (VAWT) e i sistemi di energia eolica ad alta quota (Airbone Wind Energy Systems (AWEs)) emergono come tecnologie all'avanguardia. Particolarmente rilevanti sono le turbine eoliche ad asse verticale che, con il loro design distintivo rispetto a quelle ad asse orizzontale (HAWT), si presentano come opzioni promettenti grazie alla loro notevole adattabilità alle varie direzioni del vento. Questa caratteristica, unita alla capacità di operare efficacemente in condizioni di bassa velocità del vento, le rende idonee sia per applicazioni urbane che per progetti su vasta scala. In questo scenario, AGILE WIND POWER si è affermata come una delle principali aziende produttrice di VAWT su larga scala in Svizzera, soprattutto con la turbina eolica ad asse verticale controllata in passo Vertical Sky A32. Tuttavia, i test iniziali condotti sul primo prototipo di questa macchina, hanno rivelato un comportamento aerodinamico anomalo nella zona di connessione tra le pale e il braccio del rotore, minando l'efficienza aerodinamica complessiva del sistema. Questa tesi si propone quindi di indagare con rigore scientifico il comportamento anomalo osservato, cercando di comprenderne le principali cause e successivamente proporre soluzioni efficaci per ridurlo. Attraverso questa analisi approfondita, l'obiettivo ultimo consiste nel proporre una risoluzione del problema relativo all'interferenza aerodinamica che si può manifestare nella connessione tra la pala e il braccio del rotore di una VAWT. Questo lavoro di tesi, condotto in collaborazione con l'Università svizzera ZHAW e l'AGILE WIND POWER, adotta un approccio di ricerca duale integrando sia test sperimentali condotti in galleria del vento che simulazioni numeriche CFD implementate in ANSYS Fluent.
Experimental and numerical investigation of the aerodynamic interference at the root of a pitch-controlled VAWT blade
Calzoni, Lucrezia
2022/2023
Abstract
In the current global context, characterized by the urgent quest for sustainable energy solutions to address the escalating challenges posed by climate change and geopolitical dynamics, two cutting-edge technologies have garnered attention: Vertical Axis Wind Turbines (VAWTs) and Airborne Wind Energy Systems (AWEs). Particularly, Vertical Axis Wind Turbines stand out, with their distinctive design compared to horizontal axis counterparts (HAWTs), as promising options due to their remarkable adaptability to varying wind directions. This feature, coupled with their capacity to operate effectively in low wind speed conditions, establishes them as viable options for both urban applications and large-scale projects. In this scenario, AGILE WIND POWER has emerged as a prominent producer of large-scale VAWTs in Switzerland, notably featuring the pitch-controlled VAWT Vertical Sky A32 turbine. However, the initial tests conducted on the first prototype of this machine unveiled anomalous aerodynamic behavior in the connection zone between the blades and the rotor arm, thereby compromising the overall aerodynamic efficiency of the system. This thesis aims to investigate, through a rigorous scientific method, the observed anomalous behavior, understanding its root causes and subsequently proposing effective solutions to mitigate this issues. Through this investigation, the ultimate goal is to propose a resolution to the issue of aerodynamic interference that may arise in the connection between the blade and rotor arm of VAWT. Conducted in collaboration with the Swiss University ZHAW and AGILE WIND POWER, this thesis employs a classical dual scientific approach. It integrates both experimental tests conducted in the ZHAW wind tunnel and Computational Fluid Dynamics (CFD) simulations implemented in ANSYS Fluent, offering a comprehensive and synergistic exploration of the aerodynamic challenges encountered in the Vertical Sky A32 turbine.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Calzoni_Lucrezia.pdf
non accessibile
Descrizione: testo tesi
Dimensione
84.41 MB
Formato
Adobe PDF
|
84.41 MB | Adobe PDF | Visualizza/Apri |
|
Executive_Summary_Calzoni.pdf
non accessibile
Descrizione: executive summary
Dimensione
8.22 MB
Formato
Adobe PDF
|
8.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214804