This work deals with the experimental study of in-plane heterogeneity during degradation of polymer electrolyte membrane fuel cells (PEMFC), using accelerated stress tests (AST) representative of real-world automotive degradation. A Multi Zero Gradient hardware was used to simultaneously test different materials, while region distinction along the channel was achieved thanks to operating conditions differentiation. Outlet region showed the highest Electochemically surface Active Area (ECSA) loss due to more severe operating conditions. Inlet region showed a higher local oxygen transport resistance on the platinum-ionomer interface (thin-film) and higher reversible losses, both attributed to low relative humidity operation at cathode side. Results were compared to the complete driving cycle performed in previous works and the approach resulted effective for reproducing real automotive degradation heterogeneity. An additional AST was then performed at inlet conditions with a lower cathodic relative humidity. It resulted in higher reversible losses compared to inlet conditions, while no significant difference was measured in terms of ECSA loss and mass transport resistance decay. In addition, an innovative procedure of hydrogen pumping limiting current was studied to investigate thin-film role, adapting a PEMFC physical model of MRT Fuel Cell and Batteries Lab to reproduce the new cell configuration, including thin-film effect on hydrogen oxidation reaction kinetics. The model parameters were calibrated with experimental data in oxygen limiting current measurements and then used to simulate the hydrogen pumping limiting current conditions. It resulted in good agreement with experimental data, thus it turned out to be a powerful tool to investigate the thin-film role.
Questo lavoro si occupa dello studio sperimentale dell’eterogeneità in-plane nel degrado di celle a combustibile con membrana ad elettrolita polimerico (PEMFC), attraverso l’uso di test di stress accelerato (AST) rappresentativi del degrado automobilistico reale. È stato utilizzato l’hardware Multi Zero Gradient in grado di testare simultaneamente diversi materiali. La distinzione delle regioni lungo il canale invece, è stata ottenuta attraverso la differenziazione delle condizioni operative. La regione di uscita ha mostrato la maggiore perdita di area attiva (ECSA) a causa delle condizioni operative più severe. La regione di entrata ha mostrato una maggiore resistenza locale al trasporto di massa ossigeno sull’interfaccia platino-ionomero (thin-film) ed anche maggiori perdite reversibili, entrambe attribuite al funzionamento a bassa umidità relativa sul lato catodico. I risultati sono stati confrontati con il driving cycle completo eseguito in lavori precedenti e l’approccio si è rivelato efficace per riprodurre l’eterogeneità dei meccanismi di degrado in condizioni automobilistiche. È stato perciò eseguito un ulteriore AST in condizioni di ingresso ma con una minore umidità relativa catodica. Il risultato è stato un aumento delle perdite reversibili rispetto alle condizioni di ingresso, mentre non sono state misurate differenze significative in termini di perdita di ECSA e di decadimento della resistenza di trasporto di massa. Inoltre, è stata studiata la procedura innovativa di corrente limite in hydrogen pumping per studiare il ruolo del thin-film, adattando un modello fisico sulle PEMFC dell’MRT Fuel Cell and Batteries Lab per riprodurre la nuova configurazione della cella, includendo l’effetto del thin-film sulla cinetica della reazione di ossidazione dell’idrogeno. I parametri del modello sono stati calibrati con i dati sperimentali di corrente limite in ossigeno e poi è stato usato per simulare la procedura di hydrogen pumping. Il risultato è in linea con i dati sperimentali, il modello si è quindi rivelato un potente strumento per studiare il ruolo del thin-film.
Experimental and modeling analysis of mass transport via limiting current tests to investigate PEM fuel cells heterogeneity of ageing
Ronci, Andrea
2022/2023
Abstract
This work deals with the experimental study of in-plane heterogeneity during degradation of polymer electrolyte membrane fuel cells (PEMFC), using accelerated stress tests (AST) representative of real-world automotive degradation. A Multi Zero Gradient hardware was used to simultaneously test different materials, while region distinction along the channel was achieved thanks to operating conditions differentiation. Outlet region showed the highest Electochemically surface Active Area (ECSA) loss due to more severe operating conditions. Inlet region showed a higher local oxygen transport resistance on the platinum-ionomer interface (thin-film) and higher reversible losses, both attributed to low relative humidity operation at cathode side. Results were compared to the complete driving cycle performed in previous works and the approach resulted effective for reproducing real automotive degradation heterogeneity. An additional AST was then performed at inlet conditions with a lower cathodic relative humidity. It resulted in higher reversible losses compared to inlet conditions, while no significant difference was measured in terms of ECSA loss and mass transport resistance decay. In addition, an innovative procedure of hydrogen pumping limiting current was studied to investigate thin-film role, adapting a PEMFC physical model of MRT Fuel Cell and Batteries Lab to reproduce the new cell configuration, including thin-film effect on hydrogen oxidation reaction kinetics. The model parameters were calibrated with experimental data in oxygen limiting current measurements and then used to simulate the hydrogen pumping limiting current conditions. It resulted in good agreement with experimental data, thus it turned out to be a powerful tool to investigate the thin-film role.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Ronci_Executive Summary_02.pdf
non accessibile
Descrizione: Testo Executive Summary
Dimensione
880.29 kB
Formato
Adobe PDF
|
880.29 kB | Adobe PDF | Visualizza/Apri |
2023_12_Ronci_Tesi_01.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/214833