The present work, carried out in collaboration with the Bosch Sensortec division's ASIC system architecture team in Milan, aims to determine the best filter structure to use in the implementation of a digital parametric audio equalizer for a MEMS microspeaker. Within this thesis, a comprehensive overview of discrete-time signals and systems is provided with a specific emphasis on digital filters, the finite-word arithmetic effects associated with them (overflow, coefficients quantization, round-off noise, and limit cycles), and audio equalization. Following an extensive examination of the state of the art in the field of parametric digital filter structures used in audio applications, four different realization were studied and compared in terms of the aforementioned detrimental numerical effects, by performing extensive simulation campaigns using MATLAB and Simulink. This analysis has led us to conclude that for our purpose there is no absolute best structure, but the realization that ensures minimum signal dynamics (i.e., overflow avoidance), minimum sensitivity to coefficients quantization, minimum round-off noise, and minimum possibility of limit cycles occurrence, must be chosen case by case, on the basis of the specific filter to be implemented. The simulations results, however, provide a very useful guide for selecting the best structure to use to implement a given filter in a parametric audio equalizer.

Il presente lavoro, svolto in collaborazione con il team di ASIC system architecture della divisione Bosch Sensortec di Milano, mira a determinare la migliore struttura di filtro da utilizzare nell'implementazione di un equalizzatore audio parametrico digitale per un microaltoparlante MEMS. All'interno di questa tesi, viene fornita una panoramica completa dei segnali e dei sistemi a tempo discreto, con un'enfasi specifica sui filtri digitali, sugli effetti numerici ad essi associati (overflow, quantizzazione dei coefficienti, rumore di arrotondamento e cicli limite) e sulla equalizzazione audio. A seguito di una approfondita analisi dello stato dell'arte nel campo delle strutture di filtri digitali parametrici utilizzati in applicazioni audio, quattro diverse realizzazioni sono state studiate e confrontate in termini dei suddetti effetti numerici, eseguendo estese campagne di simulazione, attraverso l'utilizzo di MATLAB e Simulink. Questa analisi ci ha portato a concludere che per il nostro scopo non esiste la struttura migliore in assoluto, ma la realizzazione che garantisce una dinamica minima dei segnali, una sensitività minima alla quantizzazione dei coefficienti, un minimo rumore di arrotondamento e una minima possibilità di occorrenza di cicli limite , deve essere scelta caso per caso, in base allo specifico filtro da implementare. I risultati delle simulazioni, tuttavia, forniscono una guida molto utile per la selezione della migliore struttura da utilizzare per implementare uno specifico filtro in un equalizzatore audio parametrico.

Analysis of IIR Digital Filter Structures for a MEMS Microspeaker's Parametric Audio Equalizer

GAVETTI, FRANCESCO
2022/2023

Abstract

The present work, carried out in collaboration with the Bosch Sensortec division's ASIC system architecture team in Milan, aims to determine the best filter structure to use in the implementation of a digital parametric audio equalizer for a MEMS microspeaker. Within this thesis, a comprehensive overview of discrete-time signals and systems is provided with a specific emphasis on digital filters, the finite-word arithmetic effects associated with them (overflow, coefficients quantization, round-off noise, and limit cycles), and audio equalization. Following an extensive examination of the state of the art in the field of parametric digital filter structures used in audio applications, four different realization were studied and compared in terms of the aforementioned detrimental numerical effects, by performing extensive simulation campaigns using MATLAB and Simulink. This analysis has led us to conclude that for our purpose there is no absolute best structure, but the realization that ensures minimum signal dynamics (i.e., overflow avoidance), minimum sensitivity to coefficients quantization, minimum round-off noise, and minimum possibility of limit cycles occurrence, must be chosen case by case, on the basis of the specific filter to be implemented. The simulations results, however, provide a very useful guide for selecting the best structure to use to implement a given filter in a parametric audio equalizer.
ING - Scuola di Ingegneria Industriale e dell'Informazione
19-dic-2023
2022/2023
Il presente lavoro, svolto in collaborazione con il team di ASIC system architecture della divisione Bosch Sensortec di Milano, mira a determinare la migliore struttura di filtro da utilizzare nell'implementazione di un equalizzatore audio parametrico digitale per un microaltoparlante MEMS. All'interno di questa tesi, viene fornita una panoramica completa dei segnali e dei sistemi a tempo discreto, con un'enfasi specifica sui filtri digitali, sugli effetti numerici ad essi associati (overflow, quantizzazione dei coefficienti, rumore di arrotondamento e cicli limite) e sulla equalizzazione audio. A seguito di una approfondita analisi dello stato dell'arte nel campo delle strutture di filtri digitali parametrici utilizzati in applicazioni audio, quattro diverse realizzazioni sono state studiate e confrontate in termini dei suddetti effetti numerici, eseguendo estese campagne di simulazione, attraverso l'utilizzo di MATLAB e Simulink. Questa analisi ci ha portato a concludere che per il nostro scopo non esiste la struttura migliore in assoluto, ma la realizzazione che garantisce una dinamica minima dei segnali, una sensitività minima alla quantizzazione dei coefficienti, un minimo rumore di arrotondamento e una minima possibilità di occorrenza di cicli limite , deve essere scelta caso per caso, in base allo specifico filtro da implementare. I risultati delle simulazioni, tuttavia, forniscono una guida molto utile per la selezione della migliore struttura da utilizzare per implementare uno specifico filtro in un equalizzatore audio parametrico.
File allegati
File Dimensione Formato  
2023_12_Gavetti_ES.pdf

accessibile in internet per tutti a partire dal 22/11/2026

Descrizione: Executive Summary Gavetti Francesco
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri
2023_12_Gavetti_Thesis.pdf

accessibile in internet per tutti a partire dal 22/11/2026

Descrizione: Thesis Gavetti Francesco
Dimensione 9.39 MB
Formato Adobe PDF
9.39 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/215008