The CMOS logic developed in the 1960s is currently the foundation for all integrated electronics up to the present day, but following Moore’s Law, it is reaching its intrinsic limits. In recent decades, significant investment has been made in "beyond-CMOS" logics that aim to overcome these limits, especially in terms of power consumption and scalability. Among the various existing architectures, one of the most promising is magneto-electric spin-orbit (MESO) logic, proposed by Intel in 2019 and belonging to the field of spin electronics (spintronics). Information in this device is stored in the magnetization state of a ferromagnetic element, built next to two units: the first is dedicated to writing and is based on the magneto-electric effect; the second is dedicated to reading and information transport and works by means of materials with strong spin-orbit coupling that exploit effects of interconversion between spin and electric charge. Due to the architecture of MESO, the output current is intrinsically related to the state of the ferromagnet. The ratio of output current to injected current is defined as the device efficiency: in early prototypes with CoFe-Pt interface, efficiency oscillates around 0.1% but aspires to reach a value of 90-100%. This thesis aims to fabricate and electrically characterize devices replicating only the reading unit of MESO logic and to understand how reading unit dimensions could affect the electrical output of this kind of architecture. In particular, devices were fabricated using optical lithography, achieving micrometric resolution to investigate scalability. Electrical characterization was performed to derive typical parameters of the materials, such as resistivity, and to measure and classify the various spin-to-charge interconversion effects typical of materials with high spin-orbit coupling such as Pt. The results obtained show the presence of further spin-to-charge interconversion contributions besides the expected inverse spin Hall effect: the main candidate seems to be anomalous Hall effect, that would exploit the presence of out-of-plane magnetization regions in a multi-domain structure. As a result from the use of micrometric devices, the signal is enlarged with respect to what predicted due to cooperation of more effects. The exploitation of multi-domain structures and out-of-plane magnetization can be considered a step forward in the increase of efficiency of the readout devices, which could be used to improve MESO logic.
La logica CMOS sviluppata negli anni 1960 è attualmente la base per tutta l’elettronica integrata fino ai giorni d’oggi, ma seguendo la legge di Moore sta raggiungendo i propri limiti intrinseci. Negli ultimi decenni, si sta fortemente investendo su logiche "beyond-CMOS" che mirano a superare questi limiti, specialmente in termini di consumo in potenza e scal- abilità. Tra le varie architetture esistenti, una delle più promettenti è la logica magneto-electric spin-orbit (MESO), proposta per la prima volta da Intel nel 2019 e sviluppata nell’ambito dell’elettronica di spin (o spintronica). L’informazione in questo dispositivo è stoccata nello stato di magnetizzazione un elemento ferromagnetico, al quale sono affiancate due unità: una di scrittura, basata sull’effetto magnetoelettrico, l’altra di lettura e trasporto dell’informazione, che è basata su materiali con forte accoppiamento spin-orbita e che sfrutta effetti di interconversione tra spin e carica elettrica. La corrente in uscita è intrinsecamente legata allo stato del ferromagnete, trasportando così informazione. Il rapporto tra corrente iniettata e corrente in uscita è definito come l’efficienza del dispositivo, che si aggira nei primi prototipi ad interfaccia CoFe-Pt su un valore di 0.1%, ma che ambisce ad un valore del 90-100%. Questo lavoro di tesi ha come obiettivi la fabbri- cazione e la caratterizzazione elettrica di dispositivi che replichino la sola unità di lettura della logica MESO, così da poter comprendere come le dimensioni del dispositivo possa influenzare questo tipo di architettura. In particolare, si è scelto di fabbricare dispositivi utilizzando litografia ottica, raggiungendo una risoluzione micrometrica, per verificare la scalabilità e l’eventuale presenza o comparsa di fattori precedentemente non considerati cambiando le dimensioni del dispositivo. La caratterizzazione elettrica è stata effettuata sia a livello dei materiali utilizzati, ricavandone i parametri tipici, sia alla ricerca di effetti di interconversione tra spin e carica tipici di materiali con alto accoppiamento spin-orbita come Pt. I risultati ottenuti mostrano la presenza di effetti di interconversion spin-carica oltre all’inverse spin Hall effect: il principale candidato sembra essere anomalous Hall effect, che sfrutterebbe la presenza di regioni con magnetizzatione "out-of-plane" in una struttura multi-dominio. Data la compresenza di diversi effetti, il risultato dato usando questi dispositivi micrometrici dà dunque un segnale ouput maggiore di quello predetto. La capacità di sfruttare strutture multi-dominio e la magnetizzazione "out-of-plane" può essere considerata un passo avanti nell’aumento dell’efficienza di questi dispositivi di lettura, mirando a migliorare la logica MESO.
Spin-to-charge current conversion in ferromagnetic/heavy metal heterostructures
Milanesi, Pietro
2022/2023
Abstract
The CMOS logic developed in the 1960s is currently the foundation for all integrated electronics up to the present day, but following Moore’s Law, it is reaching its intrinsic limits. In recent decades, significant investment has been made in "beyond-CMOS" logics that aim to overcome these limits, especially in terms of power consumption and scalability. Among the various existing architectures, one of the most promising is magneto-electric spin-orbit (MESO) logic, proposed by Intel in 2019 and belonging to the field of spin electronics (spintronics). Information in this device is stored in the magnetization state of a ferromagnetic element, built next to two units: the first is dedicated to writing and is based on the magneto-electric effect; the second is dedicated to reading and information transport and works by means of materials with strong spin-orbit coupling that exploit effects of interconversion between spin and electric charge. Due to the architecture of MESO, the output current is intrinsically related to the state of the ferromagnet. The ratio of output current to injected current is defined as the device efficiency: in early prototypes with CoFe-Pt interface, efficiency oscillates around 0.1% but aspires to reach a value of 90-100%. This thesis aims to fabricate and electrically characterize devices replicating only the reading unit of MESO logic and to understand how reading unit dimensions could affect the electrical output of this kind of architecture. In particular, devices were fabricated using optical lithography, achieving micrometric resolution to investigate scalability. Electrical characterization was performed to derive typical parameters of the materials, such as resistivity, and to measure and classify the various spin-to-charge interconversion effects typical of materials with high spin-orbit coupling such as Pt. The results obtained show the presence of further spin-to-charge interconversion contributions besides the expected inverse spin Hall effect: the main candidate seems to be anomalous Hall effect, that would exploit the presence of out-of-plane magnetization regions in a multi-domain structure. As a result from the use of micrometric devices, the signal is enlarged with respect to what predicted due to cooperation of more effects. The exploitation of multi-domain structures and out-of-plane magnetization can be considered a step forward in the increase of efficiency of the readout devices, which could be used to improve MESO logic.File | Dimensione | Formato | |
---|---|---|---|
Milanesi_Pietro_Thesis.pdf
Open Access dal 30/11/2024
Descrizione: thesis work
Dimensione
48.97 MB
Formato
Adobe PDF
|
48.97 MB | Adobe PDF | Visualizza/Apri |
Milanesi___Executive_Summary.pdf
Open Access dal 30/11/2024
Descrizione: executive summary
Dimensione
13.27 MB
Formato
Adobe PDF
|
13.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215107