On the 26th of September 2022, NASA’s probe DART successfully impacted on Dimorphos, the secondary asteroid of Didymos binary system, resulting in a change of its orbital period relative to the primary asteroid. This mission is part of the international Asteroid Impact and Deflection Assessment (AIDA) collaboration in conjunction with the European Space Agency (ESA)’s Hera spacecraft. In October 2024, the European counterpart is scheduled to be launched to the binary system where it will also deploy two CubeSats, Milani and Juventas. They will rendezvous the asteroids to improve their characterization and provide valuable scientific data. Upon the arrival of DART to the binary system, it captured high-resolution images that, in combination with the ongoing analysis of lightcurves, led to updated information regarding the system sizes, orbital parameters, and masses. These updates may drastically impact on the mission profile of the upcoming spacecrafts, posing a further element of concern in an already challenging non-Keplerian motion about a binary small-body environment. Mindful of this, the current study is devoted to the assessment of the mission profile of Milani CubeSat. Specifically, it addresses the trajectory design for scientific phases, which are highly constrained by the manoeuvring schedule of Hera and by their own observational requirements, including the asteroids and crater imaging. After providing a detailed overview of the mission and the Didymos system, the thesis evaluates the impact of the new data and presents the alternative approaches implemented for the redesign of both the Far-Range Phase (FRP) and Close-Range Phase (CRP). The mission assessment serves as a foundation for addressing a related challenge: the design of highly constrained trajectories in a small-body, non-Keplerian environment. These innovative strategies, coupled with a comprehensive cost analysis, will illustrate the potential of the proposed approaches in offering cost-effective and safe solutions for such complex trajectories.
Il 26 Settembre 2022, la sonda DART della NASA ha impattato con successo con Dimorphos, l’asteroide secondario del sistema binario Didymos, modificandone il periodo orbitale rispetto all’asteroide primario. Questa missione fa parte della collaborazione internazionale Asteroid Impact and Deflection Assessment (AIDA) insieme con la sonda Hera dell’Agenzia Spaziale Europea (ESA). Nell’ottobre 2024, Hera sarà lanciata verso il sistema binario, dove rilascerà due CubeSats, Milani e Juventas. Questi contribuiranno al miglioramento della caratterizzazione degli asteroidi e alla raccolta di dati scientifici. Con l’arrivo di DART nei pressi del sistema binario, sono state catturate immagini ad alta risoluzione che, in combinazione con le continue analisi sulle curve di luce, hanno aggiornato i dati disponibili sulle dimensioni del sistema, i parametri orbitali e le masse. Tuttavia, l’uso dei dati aggiornati potrebbe influenzare il profilo delle future missioni, costituendo un motivo di preoccupazione in un ambiente già complesso come quello non Kepleriano attorno a un sistema binario di piccoli corpi celesti. Il presente studio si dedica alla rivalutazione del profilo di missione del CubeSat Milani e si concentra in particolare sulla riprogettazione della traiettoria per le fasi scientifiche. Il loro design è fortemente vincolato sia dalla pianificazione delle manovre di Hera, che dai propri requisiti scientifici che includono, tra gli altri, l’imaging degli asteroidi e del cratere risultante dall’impatto con DART. Dopo una panoramica dettagliata della missione e del sistema binario, la tesi si pone l’obiettivo di valutare l’impatto dei nuovi dati sul profilo di missione e di fornire strategie alternative per riprogettare entrambe le fasi scientifiche, ovvero a lungo, (FRP), e a corto raggio, (CRP). La verifica della missione con i dati aggiornati costituisce una base per affrontare un problema correlato: la progettazione di traiettorie soggette a forti vincoli in un ambiente non-Kepleriano attorno a piccoli corpi celesti. Queste strategie innovative, unite a un’analisi dei costi, illustreranno il potenziale degli approcci proposti nel fornire soluzioni a basso costo e sicure per traiettorie così complesse.
Mission profile assessment and alternative redesign of Milani scientific phases
Civati, Lucia Francesca
2022/2023
Abstract
On the 26th of September 2022, NASA’s probe DART successfully impacted on Dimorphos, the secondary asteroid of Didymos binary system, resulting in a change of its orbital period relative to the primary asteroid. This mission is part of the international Asteroid Impact and Deflection Assessment (AIDA) collaboration in conjunction with the European Space Agency (ESA)’s Hera spacecraft. In October 2024, the European counterpart is scheduled to be launched to the binary system where it will also deploy two CubeSats, Milani and Juventas. They will rendezvous the asteroids to improve their characterization and provide valuable scientific data. Upon the arrival of DART to the binary system, it captured high-resolution images that, in combination with the ongoing analysis of lightcurves, led to updated information regarding the system sizes, orbital parameters, and masses. These updates may drastically impact on the mission profile of the upcoming spacecrafts, posing a further element of concern in an already challenging non-Keplerian motion about a binary small-body environment. Mindful of this, the current study is devoted to the assessment of the mission profile of Milani CubeSat. Specifically, it addresses the trajectory design for scientific phases, which are highly constrained by the manoeuvring schedule of Hera and by their own observational requirements, including the asteroids and crater imaging. After providing a detailed overview of the mission and the Didymos system, the thesis evaluates the impact of the new data and presents the alternative approaches implemented for the redesign of both the Far-Range Phase (FRP) and Close-Range Phase (CRP). The mission assessment serves as a foundation for addressing a related challenge: the design of highly constrained trajectories in a small-body, non-Keplerian environment. These innovative strategies, coupled with a comprehensive cost analysis, will illustrate the potential of the proposed approaches in offering cost-effective and safe solutions for such complex trajectories.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Civati_Tesi.pdf
solo utenti autorizzati dal 24/11/2024
Descrizione: Testo Tesi
Dimensione
22.82 MB
Formato
Adobe PDF
|
22.82 MB | Adobe PDF | Visualizza/Apri |
2023_12_Civati_ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215182