Within the recent innovations in the space industry, additive manufacturing and in particular metal powder bed fusion technologies, like selective laser melting, are rapidly becoming the most competitive choice for high-profile applications, including rocket engines and satellite components, due to the apparent unlimited design freedom they grant. The present thesis aims to investigate how to optimize the design of space propulsion thrusters for additive manufacturing at different size scales, addressing the potentialities and the limitations of this technology. Starting from a review of additive manufacturing and selective laser melting state of the art, using the associated design guidelines found in the literature, the study covered the design of two new additively manufactured liquid rocket engines, characterized by a significant different size. Part consolidation, enabled by additive manufacturing, is the main design concept behind the original aspects of these engines, which merged, in just a single part, many features, like the combustion chamber, the nozzle and the regenerative cooling channels, that are conventionally achieved by extremely complex assemblies. An innovative CAD model parametrization method has been proposed in order to derive many different regenerative cooling channel geometries; the models obtained were then manufactured through selective laser melting process and verified by leveraging the use of computed tomography and subsequent post-processing data analysis. The objective was to quantify to what extent the complex shapes enabled by additive manufacturing capabilities could be actually fabricated in terms of minimum wall thickness between the channels, circularity and surface quality, with an acceptable geometrical deviation from their nominal design. The final results support the evidence of the outstanding additive manufacturing potentialities in the context of space propulsion and a step forward creating the technological heritage and design guidelines for a future generation of additively manufactured rocket engines.
Tra le recenti innovazioni nel settore spaziale, la produzione additiva ed in particolare le tecnologie di fusione a letto di polvere metallica, come la fusione laser selettiva, stanno diventando la scelta più competitiva per applicazioni di alto profilo, inclusi propulsori e componenti per satelliti, per l’illimitata libertà di design che garantiscono. La presente tesi mira ad indagare come ottimizzare la progettazione di propulsori spaziali per la produzione additiva, su diverse scale dimensionali, ed a comprendere le potenzialità e i limiti di questa tecnologia. Partendo dello stato dell'arte circa la produzione additiva e utilizzando le associate linee guida di design presenti in letteratura, il progetto ha coperto il design di due nuovi motori a razzo a combustibile liquido prodotti in modo additivo. La tecnica di "part consolidation", resa possibile dalla produzione additiva, è l’idea di design alla base di questi motori innovativi che hanno riunito, in un unico elemento, molte delle componenti, come la camera di combustione, l'ugello e i canali per il raffreddamento rigenerativo, che convenzionalmente risultano in assiemi estremamente complessi. È stato proposto un metodo innovativo di parametrizzazione del modello CAD in modo da ottenere diverse geometrie dei canali di raffreddamento rigenerativo; i modelli ottenuti sono stati, poi, prodotti attraverso un processo di fusione laser selettiva e verificati sfruttando l’utilizzo di una tomografia computerizzata e successiva rielaborazione dei dati ottenuti. L'obiettivo è stato quello di quantificare in che misura le complesse geometrie consentite dalla produzione additiva potessero essere effettivamente fabbricate in termini di spessore minimo di parete tra i canali, circolarità e finitura superficiale, con una deviazione geometrica accettabile rispetto al design nominale. I risultati ottenuti rappresentano una prova delle potenzialità della produzione additiva nel contesto della propulsione spaziale e un passo avanti nella creazione del patrimonio tecnologico e delle linee guida di progettazione per una futura generazione di motori a razzo prodotti in modo additivo.
Structural modelling and parametrization of additively manufactured thrusters for space propulsion
IANNIELLO, MICHELE
2022/2023
Abstract
Within the recent innovations in the space industry, additive manufacturing and in particular metal powder bed fusion technologies, like selective laser melting, are rapidly becoming the most competitive choice for high-profile applications, including rocket engines and satellite components, due to the apparent unlimited design freedom they grant. The present thesis aims to investigate how to optimize the design of space propulsion thrusters for additive manufacturing at different size scales, addressing the potentialities and the limitations of this technology. Starting from a review of additive manufacturing and selective laser melting state of the art, using the associated design guidelines found in the literature, the study covered the design of two new additively manufactured liquid rocket engines, characterized by a significant different size. Part consolidation, enabled by additive manufacturing, is the main design concept behind the original aspects of these engines, which merged, in just a single part, many features, like the combustion chamber, the nozzle and the regenerative cooling channels, that are conventionally achieved by extremely complex assemblies. An innovative CAD model parametrization method has been proposed in order to derive many different regenerative cooling channel geometries; the models obtained were then manufactured through selective laser melting process and verified by leveraging the use of computed tomography and subsequent post-processing data analysis. The objective was to quantify to what extent the complex shapes enabled by additive manufacturing capabilities could be actually fabricated in terms of minimum wall thickness between the channels, circularity and surface quality, with an acceptable geometrical deviation from their nominal design. The final results support the evidence of the outstanding additive manufacturing potentialities in the context of space propulsion and a step forward creating the technological heritage and design guidelines for a future generation of additively manufactured rocket engines.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Ianniello_Tesi_01.pdf
non accessibile
Descrizione: tesi
Dimensione
20.67 MB
Formato
Adobe PDF
|
20.67 MB | Adobe PDF | Visualizza/Apri |
2023_12_Ianniello_ExecutiveSummary_02.pdf
non accessibile
Descrizione: executive summary
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215310