Laser technology constitutes a versatile and competitive manufacturing method, with laser cutting of metals amongst its most prominent application. Specifically, proximity laser cutting is the most widely adopted technique, but the need for an apparatus managing the required high-pressure gas makes the laser head quite cumbersome, thus restricting accessibility to the workpiece and constraining the system’s flexibility. Particularly challenging are applications involving, for example, limited access points or the machining of curved surfaces, as the fixed structure of the laser head prevents maintaining the optimal distance from the workpiece, resulting in inconsistent cut quality. In contrast, while remote laser cutting bypasses these limitations due to the lack of assist gas (hence, the absence of bulky laser heads), it is industrially employed only for very thin foils such as those for batteries, with extremely high cutting speeds: for thick materials, proximity cutting still stands as the most efficient cutting solution since speeds significantly greater with respect to remote cutting are achievable. This thesis work aims to address the aforementioned limitations of proximity laser cutting through remote laser cutting in the specific case of AISI 304 plates thick 1 mm. After an overview of the existing remote techniques enabling the machining of such thicknesses, the most promising one, remote fusion cutting, is selected for an extensive investigation through experimental campaigns, theoretical modelling, and high-speed footage to understand its mechanisms, aiming to enchance process productivity, i.e. cutting speed. This in-depth study led to the discovery of a novel, yet undocumented technique based on the application to the preexisting remote fusion cutting of two-dimensional dynamic beam shaping, also referred to as wobbling, namely the superposition of a periodic motion and the feed speed. The study of this innovative technique includes theoretical considerations and experimental campaigns, then complemented with valuable information from high-speed footage. It is proven that this new process performs noticeably better than its non-oscillatory version in terms of productivity, cut quality, stability, and robustness to neglected or unknown factors, thus making it potentially of industrial interest.
La tecnologia laser rappresenta un metodo di produzione versatile e competitivo, con il taglio laser di metalli fra le sue applicazioni più importanti. Nello specifico, il taglio di prossimità è la tecnica più diffusa, ma la necessità di un apparato per la gestione del gas ad alta pressione richiesto rende la testa laser piuttosto ingombrante, riducendo così l’accessibilità al pezzo da lavorare e vincolando la flessibilità del sistema. Le applicazioni che implicano punti di accesso limitati o la lavorazione di superfici curve risultano particolarmente impegnative, dato che la rigida struttura della testa del laser impedisce di mantenere la distanza ottimale dal pezzo. Al contrario, mentre il taglio remoto non ha di queste limitazioni in quanto non richiede l’utilizzo di gas (quindi l’assenza teste laser ingombranti), industrialmente viene impiegato solo per lamine molto sottili come quelle per batterie, con velocità di taglio molto alte, ma in caso di spessori elevati il taglio di prossimità è la soluzione migliore per le velocità nettamente maggiori. Questa tesi mira a superare le suddette limitazioni del taglio di prossimità attraverso il taglio laser da remoto nel caso di piastre di AISI 304 spesse 1 mm. Dopo un’analisi delle tecniche di taglio remoto per tali spessori, la più promettente, il taglio laser remoto a fusione, viene selezionata e approfondita attraverso campagne sperimentali, modellazione teorica e riprese ad alta velocità per comprenderne i meccanismi, puntando ad aumentarne le capacità produttive. Ciò ha condotto alla scoperta di una tecnica innovativa basata sull’applicazione al taglio remoto a fusione della modellazione dinamica bidimensionale del raggio laser, o wobbling, cioè la sovrapposizione di un moto periodico sulla direzione principale della velocità di taglio. Lo studio di questa tecnica innovativa comprende considerazioni teoriche e campagne sperimentali, icon integrazioni dai relativi video ad alta velocità. È stato dimostrato che questo nuovo processo offre prestazioni notevolmente migliori rispetto alla sua versione non oscillatoria in termini di produttività, qualità di taglio, stabilità e robustezza a fattori non considerati o ignoti, rendendolo potenzialmente d’interesse industriale.
Spatial beam shaping of the laser emission for remote fusion cutting
Bomben, Luca
2022/2023
Abstract
Laser technology constitutes a versatile and competitive manufacturing method, with laser cutting of metals amongst its most prominent application. Specifically, proximity laser cutting is the most widely adopted technique, but the need for an apparatus managing the required high-pressure gas makes the laser head quite cumbersome, thus restricting accessibility to the workpiece and constraining the system’s flexibility. Particularly challenging are applications involving, for example, limited access points or the machining of curved surfaces, as the fixed structure of the laser head prevents maintaining the optimal distance from the workpiece, resulting in inconsistent cut quality. In contrast, while remote laser cutting bypasses these limitations due to the lack of assist gas (hence, the absence of bulky laser heads), it is industrially employed only for very thin foils such as those for batteries, with extremely high cutting speeds: for thick materials, proximity cutting still stands as the most efficient cutting solution since speeds significantly greater with respect to remote cutting are achievable. This thesis work aims to address the aforementioned limitations of proximity laser cutting through remote laser cutting in the specific case of AISI 304 plates thick 1 mm. After an overview of the existing remote techniques enabling the machining of such thicknesses, the most promising one, remote fusion cutting, is selected for an extensive investigation through experimental campaigns, theoretical modelling, and high-speed footage to understand its mechanisms, aiming to enchance process productivity, i.e. cutting speed. This in-depth study led to the discovery of a novel, yet undocumented technique based on the application to the preexisting remote fusion cutting of two-dimensional dynamic beam shaping, also referred to as wobbling, namely the superposition of a periodic motion and the feed speed. The study of this innovative technique includes theoretical considerations and experimental campaigns, then complemented with valuable information from high-speed footage. It is proven that this new process performs noticeably better than its non-oscillatory version in terms of productivity, cut quality, stability, and robustness to neglected or unknown factors, thus making it potentially of industrial interest.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Bomben_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
9.55 MB
Formato
Adobe PDF
|
9.55 MB | Adobe PDF | Visualizza/Apri |
2023_12_Bomben_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
74.75 MB
Formato
Adobe PDF
|
74.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215520