This master's thesis presents a thorough investigation into the mechanical compression performance of 3D printed tubular hollow lattice structures, fabricated through the metal extrusion process, with a specific emphasis on the application of Bound Metal Deposition (BMD) technology using 17-4PH stainless steel. Combining experimental and numerical assessments, the study employs static simulations to comprehensively analyze the response of these lattice structures to compression loading in different configurations. Through a meticulous exploration of physical prototypes and finite element analysis, the research endeavors to unravel the intricate nuances of the structural behavior in compressive scenarios of these innovative 3D printed components. This work not only contributes to the advancing field of additive manufacturing but also holds particular significance for aerospace applications. Tubular hollow lattice structures, characterized by their lightweight yet robust nature, emerge as promising candidates for aerospace components where weight reduction is paramount. The insights gleaned from the static simulations, coupled with experimental data, provide a holistic understanding of the mechanical characteristics of these lattice structures. The results of this study not only contribute to our understanding of metal extrusion-based 3D printing, but also establish the groundwork for incorporating 3D printed tubular hollow lattice structures into the field of aerospace engineering. This study makes a valuable contribution to the continuous endeavors aimed at creating aerospace designs that are both efficient and lightweight. It represents a noteworthy advancement in the progression of additive manufacturing technology within the aerospace sector.

Questa tesi di laurea magistrale presenta un'approfondita indagine sulle prestazioni meccaniche di compressione di strutture reticolari cave stampate in 3D, realizzate attraverso il processo di estrusione metallica, con un'attenzione specifica all'applicazione della tecnologia di deposizione di metallo vincolato (BMD) utilizzando l'acciaio inossidabile 17-4PH. Unendo valutazioni sperimentali e numeriche, lo studio utilizza simulazioni statiche per analizzare in modo esaustivo la risposta di queste strutture reticolari cave al carico di compressione in diverse configurazioni. Attraverso un'esplorazione meticolosa di prototipi fisici e analisi agli elementi finiti, la ricerca si sforza di svelare le sfumature intricate del comportamento strutturale in scenari di compressione di questi innovativi componenti stampati in 3D. Questo lavoro contribuisce non solo all'avanzamento del campo della produzione additiva, ma ha anche una particolare rilevanza per le applicazioni aerospaziali. Le strutture tubolati reticolari cave, caratterizzate dalla loro natura leggera ma robusta, emergono come candidate promettenti per i componenti aerospaziali dove la riduzione del peso è fondamentale. Le intuizioni derivate dalle simulazioni statiche, unite ai dati sperimentali, forniscono una comprensione olistica delle caratteristiche meccaniche di queste strutture reticolari. I risultati di questo studio contribuiscono non solo alla comprensione della stampa 3D basata sull'estrusione metallica, ma stabiliscono anche le basi per l'integrazione delle strutture reticolari cave stampate in 3D nel campo dell'ingegneria aerospaziale. Questo studio rappresenta un contributo prezioso agli sforzi continui mirati alla creazione di progetti aerospaziali efficienti e leggeri. Rappresenta un progresso significativo nella progressione della tecnologia di produzione additiva nel settore aerospaziale.

3D-printed Hollow Lattice structures manufactured by metal extrusion: An experimental and numerical assessment

Achanccaray Mejia, Peter Anthony
2022/2023

Abstract

This master's thesis presents a thorough investigation into the mechanical compression performance of 3D printed tubular hollow lattice structures, fabricated through the metal extrusion process, with a specific emphasis on the application of Bound Metal Deposition (BMD) technology using 17-4PH stainless steel. Combining experimental and numerical assessments, the study employs static simulations to comprehensively analyze the response of these lattice structures to compression loading in different configurations. Through a meticulous exploration of physical prototypes and finite element analysis, the research endeavors to unravel the intricate nuances of the structural behavior in compressive scenarios of these innovative 3D printed components. This work not only contributes to the advancing field of additive manufacturing but also holds particular significance for aerospace applications. Tubular hollow lattice structures, characterized by their lightweight yet robust nature, emerge as promising candidates for aerospace components where weight reduction is paramount. The insights gleaned from the static simulations, coupled with experimental data, provide a holistic understanding of the mechanical characteristics of these lattice structures. The results of this study not only contribute to our understanding of metal extrusion-based 3D printing, but also establish the groundwork for incorporating 3D printed tubular hollow lattice structures into the field of aerospace engineering. This study makes a valuable contribution to the continuous endeavors aimed at creating aerospace designs that are both efficient and lightweight. It represents a noteworthy advancement in the progression of additive manufacturing technology within the aerospace sector.
GRANDE, ANTONIO MATTIA
ING - Scuola di Ingegneria Industriale e dell'Informazione
19-dic-2023
2022/2023
Questa tesi di laurea magistrale presenta un'approfondita indagine sulle prestazioni meccaniche di compressione di strutture reticolari cave stampate in 3D, realizzate attraverso il processo di estrusione metallica, con un'attenzione specifica all'applicazione della tecnologia di deposizione di metallo vincolato (BMD) utilizzando l'acciaio inossidabile 17-4PH. Unendo valutazioni sperimentali e numeriche, lo studio utilizza simulazioni statiche per analizzare in modo esaustivo la risposta di queste strutture reticolari cave al carico di compressione in diverse configurazioni. Attraverso un'esplorazione meticolosa di prototipi fisici e analisi agli elementi finiti, la ricerca si sforza di svelare le sfumature intricate del comportamento strutturale in scenari di compressione di questi innovativi componenti stampati in 3D. Questo lavoro contribuisce non solo all'avanzamento del campo della produzione additiva, ma ha anche una particolare rilevanza per le applicazioni aerospaziali. Le strutture tubolati reticolari cave, caratterizzate dalla loro natura leggera ma robusta, emergono come candidate promettenti per i componenti aerospaziali dove la riduzione del peso è fondamentale. Le intuizioni derivate dalle simulazioni statiche, unite ai dati sperimentali, forniscono una comprensione olistica delle caratteristiche meccaniche di queste strutture reticolari. I risultati di questo studio contribuiscono non solo alla comprensione della stampa 3D basata sull'estrusione metallica, ma stabiliscono anche le basi per l'integrazione delle strutture reticolari cave stampate in 3D nel campo dell'ingegneria aerospaziale. Questo studio rappresenta un contributo prezioso agli sforzi continui mirati alla creazione di progetti aerospaziali efficienti e leggeri. Rappresenta un progresso significativo nella progressione della tecnologia di produzione additiva nel settore aerospaziale.
File allegati
File Dimensione Formato  
2023_12_Achanccaray.pdf

non accessibile

Descrizione: Peter Achanccaray's Thesis
Dimensione 15.04 MB
Formato Adobe PDF
15.04 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/215610