Decarbonising road transport is one of today’s key priorities for governments and policymakers around the world. Electrification is arguably the most promising way to have vehicles that are emission-free at the tailpipe, and the sales of electric vehi-cles (EVs) are expected to rise significantly over the next decade. EVs need recharging and the growing number of EVs on the road must be matched by the development of an adequate publicly accessible charging infrastructure. In particular, given that EVs currently have a shorter driving range compared to petrol and diesel cars, and that recharging an EV takes much longer than refuelling a tra-ditional vehicle, there is a great need for fast charging stations, that are essential to enable long-distance EV journeys. The rollout of fast charging stations is challenging: they are extremely expensive, and they can only be profitable if they are located where there are enough EVs to use them. Therefore, their deployment must be carefully planned. Over the past ten years the scientific literature has proposed a wide range of mod-els and approaches to determine the optimal location of EV fast charging stations. However, the review of the relevant contributions has found that many authors studied the problem from the perspective of a central planner wishing to support the uptake of EVs by ensuring that all or most of the charging demand is covered. The point of view of a charging station operator evaluating the economics of a pro-ject and its viability is instead rarely adopted. It was also found that many of the proposed formulations are difficult to apply in practice, either because they require data that are usually not available or because they make unrealistic assumptions while also being computationally very complex. Developing from these findings, this research presents a practical model to deter-mine the optimal location and sizing of EV fast charging stations based on the max-imisation of the project’s Net Present Value. The proposed model adopts a hierar-chical structure based on two stages: first the capacity of a potential charging sta-tion at each candidate location is optimised, then the best locations are selected subject to a budget constraint. The model is applied to determine the optimal loca-tions of EV fast charging stations along the United Kingdom’s motorways.
La decarbonizzazione del trasporto stradale è diventata una delle maggiori priorità per i governi e policymaker di tutto il mondo. L’elettrificazione è indubbiamente la tecnologia più promettente per avere veicoli a emissioni zero, e si prevede che le vendite di veicoli elettrici (in inglese, electric vehicles o EVs) aumenteranno in modo significativo nel prossimo decennio. Al crescente numero di veicoli elettrici deve corrispondere lo sviluppo di un’adeguata infrastruttura di ricarica che sia accessibile al pubblico. In particolare, dal momento che attualmente i veicoli elettrici hanno un’autonomia inferiore ri-spetto alle auto a benzina e diesel, e che la ricarica di un veicolo elettrico richiede molto più tempo rispetto al rifornimento di un veicolo tradizionale, è necessario lo sviluppo di una rete di stazioni di ricarica rapida, essenziali per consentire viaggi a lunga percorrenza. Investire nella costruzione di stazioni di ricarica rapida è molto rischioso: sono estremamente costose e possono essere profittevoli solo se situate dove ci sono ab-bastanza veicoli elettrici per utilizzarle. Per questo, l’installazione di questo tipo di stazione di ricarica va attentamente pianificata. La letteratura scientifica ha proposto diversi modelli e approcci per individuare la posizione ottimale delle stazioni di ricarica rapida. Tuttavia, è emerso che molti au-tori hanno studiato il problema dal punto di vista di un pianificatore centrale che desidera supportare la diffusione dei veicoli elettrici garantendo la copertura della domanda di ricarica. Il punto di vista di un investitore che vuole valutare la fattibili-tà economica di un progetto viene invece adottato raramente. Si è inoltre riscontra-to che molte delle formulazioni proposte sono difficili da applicare in pratica, spes-so perché richiedono dati che solitamente non sono disponibili. Sviluppandosi da questi risultati, questa ricerca presenta un modello pratico per de-terminare la posizione e la capacità ottimali delle stazioni di ricarica rapide in base alla massimizzazione del Valore Attuale Netto del progetto. Il modello proposto adotta una struttura gerarchica basata su due fasi: prima viene ottimizzata la capa-cità di una potenziale stazione di ricarica in ciascuna posizione, poi vengono sele-zionate le posizioni migliori nel rispetto di un vincolo di budget. Il modello viene applicato per determinare le posizioni ottimali delle stazioni di ricarica rapida lun-go le autostrade del Regno Unito.
Determining the Optimal Location and Sizing of EV Fast Charging Stations: a Hierarchical Model Based on NPV Maximisation
DALPASSO, FRANCESCO
2022/2023
Abstract
Decarbonising road transport is one of today’s key priorities for governments and policymakers around the world. Electrification is arguably the most promising way to have vehicles that are emission-free at the tailpipe, and the sales of electric vehi-cles (EVs) are expected to rise significantly over the next decade. EVs need recharging and the growing number of EVs on the road must be matched by the development of an adequate publicly accessible charging infrastructure. In particular, given that EVs currently have a shorter driving range compared to petrol and diesel cars, and that recharging an EV takes much longer than refuelling a tra-ditional vehicle, there is a great need for fast charging stations, that are essential to enable long-distance EV journeys. The rollout of fast charging stations is challenging: they are extremely expensive, and they can only be profitable if they are located where there are enough EVs to use them. Therefore, their deployment must be carefully planned. Over the past ten years the scientific literature has proposed a wide range of mod-els and approaches to determine the optimal location of EV fast charging stations. However, the review of the relevant contributions has found that many authors studied the problem from the perspective of a central planner wishing to support the uptake of EVs by ensuring that all or most of the charging demand is covered. The point of view of a charging station operator evaluating the economics of a pro-ject and its viability is instead rarely adopted. It was also found that many of the proposed formulations are difficult to apply in practice, either because they require data that are usually not available or because they make unrealistic assumptions while also being computationally very complex. Developing from these findings, this research presents a practical model to deter-mine the optimal location and sizing of EV fast charging stations based on the max-imisation of the project’s Net Present Value. The proposed model adopts a hierar-chical structure based on two stages: first the capacity of a potential charging sta-tion at each candidate location is optimised, then the best locations are selected subject to a budget constraint. The model is applied to determine the optimal loca-tions of EV fast charging stations along the United Kingdom’s motorways.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Dalpasso_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
2023_12_Dalpasso_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
768.67 kB
Formato
Adobe PDF
|
768.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215625