To face the predicted increase in demand for lithium-based energy storage devices, new battery technologies based on cheaper and more abundant materials are under investigation. Among them, potassium batteries have attracted a lot of attention. Their application is still limited by the choice of electrode materials, by the electrochemical instability of the liquid electrolyte when in contact with the electrodes, and by the growth of dendritic structures, all leading to rapid capacity fading and safety issues (i.e., thermal runaway). To mitigate the problem of dendrite growth and enhance safety, gel polymer electrolytes (GPEs) have been proposed. In this thesis, the aim is to develop a self-healable GPE for application in potassium batteries, ultimately enabling enhanced safety and improved battery service life in post-lithium energy storage technologies. The GPE systems proposed in this work were obtained by swelling new self-healable polymeric membranes in a solution of potassium salts. Such polymeric membranes were based on semi-interpenetrated networks resulting from the UV crosslinking reaction of ureidopyrimidinone methacrylate (UPyMA) and polycaprolactone dimethacrylate (PCLDMA) in the presence of polyethylene glycol 2000 (PEG2000) to increase the mechanical flexibility of the overall system. Moreover, lignin particles obtained by an ultrasound-assisted size-reduction process were incorporated in the UPyMA/PCLDMA/PEG2000 membranes as composite filler at increasing concentrations. The so-obtained composite GPEs incorporating lignin were found to exhibit liquid electrolyte uptake higher than 130% and suitable thermal and calorimetric characteristics, as inferred by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). From the electrochemical point of view, all composite membranes were tested in potassium batteries, showing values of ionic conductivities of the order of 10-3 S/cm, which is a consistent value in the field of GPEs, and specific capacity values in the 120-140 mAh/g range, with a maximum cyclability of over 800 cycles. This behavior was found to be correlated with the presence of lignin, which enabled a significant enhancement of the performance of the device. Thanks to the intrinsic self-healing ability of the obtained membranes, cells incorporating such materials could retain more than 80% of their initial capacity for over 250 cycles, even after mechanically damaging the membrane in situ during operation. Based on these results, this work provides the first demonstration of lignin-containing self-healable GPEs for potassium batteries with high performance and prolonged service life.
Per far fronte al previsto aumento della domanda di batterie al litio, sono al vaglio della ricerca nuove tecnologie che utilizzino materiali meno costosi e più abbondanti. Tra queste le batterie al potassio hanno attirato molta attenzione. La limitata scelta dei materiali utilizzabili come elettrodi, l’instabilità elettrochimica degli elettroliti liquidi in contatto con gli elettrodi e la crescita di dendriti, sono i principali ostacoli da affrontare in quanto conducono ad una rapida perdita di capacità e a problemi di sicurezza (es. instabilità termica). Gli elettroliti gel polimerici (GPEs) sono una valida opzione per ridurre il problema della formazione di dendriti ed aumentare la sicurezza delle batterie. Lo scopo di questa tesi è sviluppare un GPE autoriparante che possa esser usato nelle batterie al potassio per migliorarne la sicurezza ed prolungarne il tempo di servizio. I GPEs sono stati ottenuti rigonfiando la nuova membrana polimerica autoriparante con una soluzione di sali di potassio. Queste membrane sono dei sistemi semiinterpenetrati risultanti dalla reazione di reticolazione UV tra ureidopirimidinone metacrilato (UPyMA) e policaprolattone dimetacrilato (PCLDMA), in presenza di polietilenglicole 2000 (PEG2000) per migliorare la flessibilità complessiva del sistema. Inoltre, particelle di lignina, ridotte di dimensione dopo un processo di ultrasonicazione, sono state incorporate come filler a concentrazioni crescenti nelle membrane UPyMA/PCLDMA/PEG2000. I GPEs compositi ottenuti hanno mostrato una capacità maggiore del 130 % di ospitare l’elettrolita, proprietà termiche e calorimetriche soddisfacenti, come si rileva dalle analisi termogravimetriche e dalla calorimetria differenziale a scansione. Dal punto di vista elettrochimico, tutte le membrane contenenti lignina hanno mostrato valori di conduttività ionica dell’ordine di 10-3 S/cm, valori in linea per i GPEs, e valori di capacità specifica nell’intervallo 120-140 mAh/g con una ciclabilità massima di oltre 800 cicli. Questi buoni risultati sono legati alla presenza della lignina che migliora le performance della batteria al potassio. Grazie all’autoriparabilità intrinseca delle membrane ottenute, le celle che incorporano questo materiale hanno mantenuto l’80 % della capacità iniziale dopo 250 cicli anche quando la membrana è stata danneggiata in situ durante l’operazione. Sulla base dei risultati ottenuti, questo lavoro fornisce la prima dimostrazione di un GPE autoriparabile contente lignina per batterie al potassio con elevate performance e tempo di servizio prolungato.
Self-healable Gel Polymer Electrolytes incorporating lignin for sustainable potassium batteries
Sartorio, Sofia Francesca
2022/2023
Abstract
To face the predicted increase in demand for lithium-based energy storage devices, new battery technologies based on cheaper and more abundant materials are under investigation. Among them, potassium batteries have attracted a lot of attention. Their application is still limited by the choice of electrode materials, by the electrochemical instability of the liquid electrolyte when in contact with the electrodes, and by the growth of dendritic structures, all leading to rapid capacity fading and safety issues (i.e., thermal runaway). To mitigate the problem of dendrite growth and enhance safety, gel polymer electrolytes (GPEs) have been proposed. In this thesis, the aim is to develop a self-healable GPE for application in potassium batteries, ultimately enabling enhanced safety and improved battery service life in post-lithium energy storage technologies. The GPE systems proposed in this work were obtained by swelling new self-healable polymeric membranes in a solution of potassium salts. Such polymeric membranes were based on semi-interpenetrated networks resulting from the UV crosslinking reaction of ureidopyrimidinone methacrylate (UPyMA) and polycaprolactone dimethacrylate (PCLDMA) in the presence of polyethylene glycol 2000 (PEG2000) to increase the mechanical flexibility of the overall system. Moreover, lignin particles obtained by an ultrasound-assisted size-reduction process were incorporated in the UPyMA/PCLDMA/PEG2000 membranes as composite filler at increasing concentrations. The so-obtained composite GPEs incorporating lignin were found to exhibit liquid electrolyte uptake higher than 130% and suitable thermal and calorimetric characteristics, as inferred by Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). From the electrochemical point of view, all composite membranes were tested in potassium batteries, showing values of ionic conductivities of the order of 10-3 S/cm, which is a consistent value in the field of GPEs, and specific capacity values in the 120-140 mAh/g range, with a maximum cyclability of over 800 cycles. This behavior was found to be correlated with the presence of lignin, which enabled a significant enhancement of the performance of the device. Thanks to the intrinsic self-healing ability of the obtained membranes, cells incorporating such materials could retain more than 80% of their initial capacity for over 250 cycles, even after mechanically damaging the membrane in situ during operation. Based on these results, this work provides the first demonstration of lignin-containing self-healable GPEs for potassium batteries with high performance and prolonged service life.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Sartorio_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
5.38 MB
Formato
Adobe PDF
|
5.38 MB | Adobe PDF | Visualizza/Apri |
2023_12_Sartorio_Executive Summary_02.pdf
solo utenti autorizzati a partire dal 29/11/2026
Descrizione: Executive Summary
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215780