Today, the ever increasing concerns regarding climate change are triggering more restrictive regulations on both CO2 and non-CO2 emissions. Although aviation contributes in minor amount to the global emissions, the direct emission in the upper troposphere is regarded to have a more severe impact on climate. The application of zero-emission technologies to decarbonize aviation does not appear feasible in the short-medium term, mainly for the importance of weight in aircraft performance. One feasible option to mitigate CO2 and non-CO2 emissions (such as soot) from aviation comes from the use of Sustainable Aviation Fuels (SAFs). Soot consists of carbonaceous particles produced from incomplete combustion that negatively affect both climate change and human health. This work aim at studying by means of a detailed kinetic modeling, the sooting tendency of standard and sustainable jet fuels. A modeling approach is adopted to study the combustion of jet fuels. The jet engine combustion chamber is substituted by laminar counterflow diffusive flames. Such flames cannot reproduce the complexity of the fluid dynamic behavior of turbine engines but allow i) the analysis of simplified diffusive phenomena characterized by a 1D geometry and ii) an in-depth investigation of fundamental combustion chemistry. Jet fuels are complex mixtures composed of hundreds of components, but they can be modeled with surrogates. Surrogates are mixtures composed of 2 up to 10 components that reproduce physical and chemical properties and the subdivision in hydrocarbon classes of real fuels. The species used to represent the different hydrocarbon classes in surrogates, possess a validated kinetic model. A detailed discrete sectional soot model is developed in this thesis, by applying analogy rules with aromatic gas-phase chemistry. The soot sub-model, coupled to a detailed gas-phase model, is firstly validated on ethylene flames, to check its predictive capability. Then is used to reproduce experimental soot volume fraction profiles obtained by jet fuels combustion in a counterflow burner facility and compared with results obtained by the previous version of the model. Through a post-processing analysis, the kinetic patterns governing soot formation are investigated for the different jet fuels analyzed. Finally, owing to the improved prediction capability of the model, the relationship between blending ratio and the sooting tendencies of alternative/conventional jet fuel blends is examined. Therefore, this study provides an easy-to use and powerful tool to study soot emissions of real jet fuels and allows to spot analogies and differences among the main kinetic patterns leading to carbonaceous particles from different classes of chemical species included in the real fuels.
Oggi, le crescenti preoccupazioni riguardo il cambiamento climatico stanno innescando regolamentazioni più restrittive sia sulle emissioni di CO2 e di non CO2. Sebbene l'aviazione contribuisca in modo marginale alle emissioni globali, la diretta emissione nella troposfera superiore è considerata avere un impatto più grave sul clima. L'applicazione di tecnologie a zero emissioni per decarbonizzare l'aviazione non sembra essere fattibile nel breve-medio termine, principalmente per l'importanza del peso sulle prestazioni degli aerei. Un’ opzione fattibile per mitigare le emissioni di CO2 e di non CO2 (come il soot) dall'aviazione proviene dall'uso di carburanti sostenibili per l'aviazione. Il soot consiste in particelle carboniose prodotte da una combustione incompleta, che influiscono negativamente sia sul cambiamento climatico che sulla salute umana. Questo lavoro mira a studiare, mediante una modellazione cinetica dettagliata, la tendenza alla formazione di soot dei carburanti standard e sostenibili per l’aviazione. Si adotta un approccio modellistico per studiare la combustione dei carburanti per l’aviazione. La camera di combustione del motore di un aereo è sostituita da fiamme laminari controdiffusive. Tali fiamme non possono riprodurre la complessità del comportamento fluidodinamico dei motori a turbina ma consentono i) l'analisi di fenomeni diffusivi semplificati caratterizzati da una geometria 1D e ii) un'approfondita indagine della chimica fondamentale della combustione. I carburanti per l’aviazione sono miscele complesse composte da centinaia di componenti, ma possono essere modellati con dei surrogati. I surrogati sono miscele composte da 2 fino a 10 componenti che riproducono proprietà fisiche e chimiche e la suddivisione in classi di idrocarburi dei carburanti reali. Le specie utilizzate per rappresentare le diverse classi di idrocarburi nei surrogati possiedono un modello cinetico validato. In questa tesi è stato sviluppato un modello dettagliato, discreto e sezionale del soot, applicando regole di analogia con la chimica in fase gas degli aromatici. Il sotto-modello del soot, accoppiato a un modello dettagliato della fase gas, viene prima validato sulle fiamme di etilene, per verificare la sua capacità predittiva. Successivamente viene utilizzato per riprodurre i profili sperimentali della frazione volumetrica del soot ottenuti dalla combustione di carburanti per aerei in un bruciatore controdiffusivo e confrontati con i risultati ottenuti dalla versione precedente del modello. Attraverso un'analisi di post-processing, vengono indagati i modelli cinetici che governano la formazione di soot per i diversi carburanti analizzati. Infine, grazie alla migliorata capacità predittiva del modello, viene esaminata la relazione tra il rapporto di miscelazione e le tendenze alla formazione di soot delle miscele di carburanti alternativi-tradizionali. Pertanto, questo studio fornisce uno strumento facile da usare e potente per studiare le emissioni di soot dei veri carburanti per jet e permette di individuare analogie e differenze tra i principali modelli cinetici che portano a particelle carboniose dalle diverse classi di specie chimiche incluse nei carburanti reali.
Predicting the sooting tendency of sustainable aviation fuels: a kinetic modeling study
VELTRI, MORGAN
2022/2023
Abstract
Today, the ever increasing concerns regarding climate change are triggering more restrictive regulations on both CO2 and non-CO2 emissions. Although aviation contributes in minor amount to the global emissions, the direct emission in the upper troposphere is regarded to have a more severe impact on climate. The application of zero-emission technologies to decarbonize aviation does not appear feasible in the short-medium term, mainly for the importance of weight in aircraft performance. One feasible option to mitigate CO2 and non-CO2 emissions (such as soot) from aviation comes from the use of Sustainable Aviation Fuels (SAFs). Soot consists of carbonaceous particles produced from incomplete combustion that negatively affect both climate change and human health. This work aim at studying by means of a detailed kinetic modeling, the sooting tendency of standard and sustainable jet fuels. A modeling approach is adopted to study the combustion of jet fuels. The jet engine combustion chamber is substituted by laminar counterflow diffusive flames. Such flames cannot reproduce the complexity of the fluid dynamic behavior of turbine engines but allow i) the analysis of simplified diffusive phenomena characterized by a 1D geometry and ii) an in-depth investigation of fundamental combustion chemistry. Jet fuels are complex mixtures composed of hundreds of components, but they can be modeled with surrogates. Surrogates are mixtures composed of 2 up to 10 components that reproduce physical and chemical properties and the subdivision in hydrocarbon classes of real fuels. The species used to represent the different hydrocarbon classes in surrogates, possess a validated kinetic model. A detailed discrete sectional soot model is developed in this thesis, by applying analogy rules with aromatic gas-phase chemistry. The soot sub-model, coupled to a detailed gas-phase model, is firstly validated on ethylene flames, to check its predictive capability. Then is used to reproduce experimental soot volume fraction profiles obtained by jet fuels combustion in a counterflow burner facility and compared with results obtained by the previous version of the model. Through a post-processing analysis, the kinetic patterns governing soot formation are investigated for the different jet fuels analyzed. Finally, owing to the improved prediction capability of the model, the relationship between blending ratio and the sooting tendencies of alternative/conventional jet fuel blends is examined. Therefore, this study provides an easy-to use and powerful tool to study soot emissions of real jet fuels and allows to spot analogies and differences among the main kinetic patterns leading to carbonaceous particles from different classes of chemical species included in the real fuels.File | Dimensione | Formato | |
---|---|---|---|
2023_12_Veltri_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
4.11 MB
Formato
Adobe PDF
|
4.11 MB | Adobe PDF | Visualizza/Apri |
2023_12_Veltri_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215827