Nowadays cardiovascular diseases represent one of the most relevant cause of death worldwide, even more than the sum of all forms of cancer; their treatment and prevention involve high direct and indirect costs for the society (1), (2). In case of heart valve diseases, specifically, current stented biological heart valve implants still report a reoperation rate of up to almost 40%, while innovative minimally invasive procedures (such as the transcatheter valve implant, TAVI) still suffer from structural degradation due to calcification over time and are associated with high peacemaker implantation (3). Deterioration of the biological implants is caused primarily by chronic inflammatory reaction due to the failure to detoxify the fixative remnants in the tissue (4), (5), and/or the incomplete removal of major xenoantigens (α-Gal) (6), (7), (8), (9), (10). Such problems appear to be even a heavier burden if considered for pediatric VHDs, where, in addition, the prosthetic devices should be able to also guarantee growth over time. In such cases it’s preferable to exploit surgical techniques such as the “switch” or “Ross” procedure that relies upon the usage of autologous substitutes (for the aortic position), trying to allow self-renewal and growth of the valve for the growing patient. However, this kind of technique is technically demanding and various complications have been reported to occur in the post-operative period (11). At the same time, mechanical heart valves still require a lifelong blood thinning therapy for the patient. A promising approach to circumvent the mentioned shortcomings was introduced by Langer and Vacanti in 1993 under the definition of Tissue Engineering (12), (13), (14), that involves the application of “the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function” (15). This strategy is based on three main ingredients: (1) autologous cells, harvested from the patients itself so to confer non-immunogenicity to the tissue engineered construct, (2) a supporting material (natural or synthetic) where cells can proliferate, and (3) biophysical stimuli (16), (17), (18), (19). In the framework of the clinical practice, important results in Tissue Engineering (TE) field have already been achieved: skin (20), (21), cartilage (22), bone (23), (24), and trachea (25). Nevertheless, contradictory results obtained in the attempt of engineering more complex tissues, still relegate TE in a pure theoretical discipline (26), (27). In addition, given the intrinsic complexity and heterogeneity of advanced cell-based therapy products, to date, no detailed standard or guidance is covering their manufacturing and thus Good Manufacturing Practice (GMP) is intended to demonstrate whether or not tissue engineered products are produced according to predefined manufacturing criteria, concerning both production and quality control (14), thus being suitable for in vivo trials. With the aim of being GMP compliant, a clinically relevant tissue for heart valve tissue engineering must meet numerous criteria, among others: non-immunogenicity, non-thrombogenicity, must promote cellular proliferation and viability, and must be functional in physiological conditions (28). In this perspective, one of the most crucial tissues to be repaired in case of disease is the aortic valve. Ideally, a tissue engineered heart valve (TEHV), but more in general a heart valve substitute, should include the capacity of self-repair, adaptively remodel, grow and be resistant to infections and thrombogenicity, as stated by one of the pioneers of the heart valve surgery, Emary Harken (29). Unfortunately, so far no currently available heart valve prosthesis possesses all these features. However, the design of TEHVs with a self-repair and remodeling capacity might address these unmet needs. Despite several materials and cell types have been proposed, there are still a number of unresolved problems in TEHVs due to insufficient structural stability of the engineered leaflets and consequent leaflet “retraction” and “thickening” effects (30), which result in TEHVs failure at mid-/long-term (31). In the past years many strategies have been developed to create a functional TEHV (32), (27). Among them, one promising option remain the possibility to exploit decellularized matrices as substrate, given their favorable characteristics in terms of biocompatibility, in fact the decellularization process aims to provide an extracellular matrix-based scaffold with low immunogenicity and retained regenerative potential, and of the large livestock availability. Indeed, for example, previous interesting contributions (33), (34) showed the suitability of a decellularization procedure with ionic/non-ionic detergents to maintain the mechanical properties and reduce the immunogenicity of porcine pericardium. Besides drastically reducing the content of xenoantigens, the treatment also increased the permeability of the tissue, thus making possible the employment of a perfusion bioreactor to enable mass transport through the pericardial matrix and promote stable cellularization (34). Animal pericardium is, to date, one of the elective materials for biological heart valve prosthesis fabrication in light of the similar mechanical features to these of the aortic valve (35). Despite their different structural, mechanical and morphological characteristics, in the last decades bovine and porcine pericardia have alternatively been used as a suitable matrix for heart valve fabrication, but in the perspective of a TEHV manufacturing where the strategy is to reintroduce cells into the scaffold matrix, the more loosen microstructure of the porcine pericardium appears, indeed, to be more appropriate (35). This consideration is especially valid if the favorable morphological features of porcine pericardium are used in combination with a suitable decellularization method based on the employment of ionic and non-ionic detergents that both maintained the structural integrity and mechanical resistance of human (36) and porcine (33) pericardium and abolishes xenoantigens in the latter. The aortic valve has two main resident cell populations: valvular interstitial cells (VIC), that are tasked with the physiological production and renewal of the ECM and the valve endothelial cells (VEC) that are in charge of the mediation of infiltration of lipids and nutrients in the valve’s ECM (32). Ideally the best option as a cell source to fabricate a TEHV would be autologous heart valve cells, but these kinds of cells are non-sacrificial. Given the fibroblast like phenotype of VIC and their mesenchymal origin (37), human adipose derived stem cells (hASC) have been shown to be a promising alternative (38), (39). Indeed, besides their potentially suitable resemblance with valve cells, they also are a readily available cell source. Confined perfusion bioreactors, such as the UCup (41), allow cell seeding and culture of cells in three dimensional constructs fostering cell growth and viability (41), (42) by enhancing the supply of nutrients to the cells and allowing the efficient removal of waste. Compared to other recellularization techniques to seed cells in valve-competent scaffolds based on static culture (43), (44), the employment of this system indeed enables a higher penetration of cells inside the scaffold. The present project aims to produce a recellularized tissue, by means of seeding ASC into a xenoantigens and aldehydic residue free decellularized animal matrix exploiting confined perfusion bioreactor systems, capable of representing the first personalized approach to aortic valve TE in the framework of the Ozaki technique, a surgical procedure that relies on the possibility by the surgeon of shaping the autologous pericardium, after mild glutaraldehyde treatment, directly in the surgical setting, so to obtain an aortic valve tailored on the patient’s need, with optimal fluid dynamics (45). This procedure showed encouraging short/midterm results, so far, but the long-term outcomes still require further investigations (46). In the attempt to engineer the process of in vivo self-remodel toward a functional tissue rather than to provide a fully engineered tissue, our recellularized tissue could be used as a “living” alternative to the autologous pericardium during the Ozaki technique. With the advantage of the elimination of the glutaraldehyde treatment, that is a well known cause of possible calcium influx into the biological heart valve prostheses (5) and of a higher biocompatibility. To achieve the overarching aim of the project, we developed a rational step-wise recellularization procedure suitable to produce pericardial patches of the proper dimension to be used during the Ozaki procedure both for the pediatric and the adult procedures. After summarizing and reviewing the key elements involved in TEHV fabrication and regenerative medicine of the heart valves (Chapter I), we will establish a preliminary recellularization procedure using commercially available small-scale confined perfusion bioreactors, porcine valvular interstitial cells and the decellularized porcine pericardium (Chapter II). This will allow us both to set the recellularization procedure parameters and to establish a future reference point for the outcome of the recellularization procedure with the hASC. Then, after testing as a possible alternative to the porcine pericardium, the bovine pericardium, to date the other elective material for biological heart valve fabrication, we will implement hASC in the same recellularization procedure (Chapter III) checking the expression of hVIC-like proteins and the production of valve-like matrix. Lastly, once assessed the effectiveness of the recellularization procedure with hASC we will focus on the production of functional patches of a suitable dimension for the clinical practice.To do this, we will scale-up the recellularization procedure involving the rational-step wise design and prototyping of a novel bioreactor, in parallel with the usage of an already GMP compliant larger-scale confined perfusion device (the TCup) suitable for the production of patches for the pediatric Ozaki technique (Chapter IV).
Attualmente, le malattie cardiovascolari rappresentano una delle cause più rilevanti di morte a livello mondiale, addirittura più della somma di tutte le forme di cancro; il loro trattamento e prevenzione comportano elevati costi diretti e indiretti per la società (1), (2). Nel caso delle patologie valvolari in particolare, gli attuali impianti di valvole cardiache biologiche dotate di stent presentano ancora un tasso di reintervento che arriva fino al 40%, mentre le innovative procedure mininvasive, come l'impianto di valvole trans-catetere (TAVI), sono ancora soggette a degradazione strutturale dovuta alla calcificazione nel tempo e sono associate a un elevato impianto di pacemaker (3). Il deterioramento degli impianti biologici è principalmente causato da una reazione infiammatoria cronica dovuta al mancato smaltimento dei residui fissativi nel tessuto (4), (5), e/o alla rimozione incompleta di importanti xenoantigeni (α-Gal) (6), (7), (8), (9), (10). Questi problemi sembrano essere ancor più pesanti se considerati per le malattie valvolari pediatriche, dove, inoltre, i dispositivi protesici dovrebbero essere in grado di garantire la crescita nel tempo. In tali casi, è preferibile utilizzare tecniche chirurgiche come la procedura "switch" o "Ross", che si basano sull'uso di sostituti autologhi (per la posizione aortica), cercando di permettere l'autorinnovamento e la crescita della valvola per il paziente pediatrico. Tuttavia, questo tipo di tecnica è tecnicamente impegnativo e sono state segnalate varie complicazioni nel periodo post-operatorio (11). Allo stesso tempo, le valvole cardiache meccaniche richiedono ancora una terapia a vita con anticoagulanti per il paziente. Un approccio promettente per superare le limitazioni menzionate è stato introdotto da Langer e Vacanti nel 1993 sotto il nome di Ingegneria Tissutale (12), (13), (14), che coinvolge l'applicazione "dei principi dell'ingegneria e delle scienze della vita per lo sviluppo di sostituti biologici che ripristinino, mantengano o migliorino la funzione del tessuto" (15). Tale strategia si basa su tre ingredienti principali: (1) cellule autologhe, prelevate dal paziente stesso per conferire non immunogenicità al costrutto ingegnerizzato, (2) un materiale di supporto (naturale o sintetico) in cui le cellule possono proliferare, e (3) stimoli biofisici (16), (17), (18), (19). Nel contesto della pratica clinica, importanti risultati nel campo dell'Ingegneria Tissutale (TE) sono già stati ottenuti: pelle (20), (21), cartilagine (22), osso (23), (24), e trachea (25). Tuttavia, risultati contrastanti ottenuti nel tentativo di ingegnerizzare tessuti più complessi relegano ancora l'Ingegneria Tissutale a una disciplina puramente teorica (26), (27). Inoltre, dato l'intrinseco grado di complessità e eterogeneità dei prodotti terapeutici avanzati basati sulle cellule, fino ad oggi, non esiste alcuna guida dettagliata o standard che ne copra la produzione e quindi la Good Manufacturing Practice (GMP) è destinata a dimostrare se i prodotti di ingegneria tissutale sono prodotti secondo criteri di produzione predefiniti, riguardanti sia la produzione che il controllo di qualità (14), risultando quindi idonei per gli studi in vivo. Con l'obiettivo di essere conformi alla GMP, un tessuto clinicamente rilevante per l'ingegneria tissutale delle valvole cardiache deve soddisfare numerosi criteri, tra cui: non immunogenicità, non trombogenicità, promozione della proliferazione e della vitalità cellulare e funzionalità in condizioni fisiologiche (28). In questa prospettiva, uno dei tessuti più cruciali da riparare in caso di malattia è la valvola aortica. Idealmente, una valvola cardiaca ingegnerizzata (TEHV), ma più in generale un sostituto della valvola cardiaca, dovrebbe includere la capacità di autoriparazione, rimodellarsi in modo adattativo, crescere e resistere a infezioni e trombogenicità, come affermato da uno dei pionieri della chirurgia delle valvole cardiache, Emary Harken (29). Purtroppo, finora nessuna protesi di valvola cardiaca attualmente disponibile possiede tutte queste caratteristiche. Tuttavia, la progettazione di TEHV con capacità di autoriparazione e rimodellamento potrebbe affrontare queste esigenze non soddisfatte. Nonostante siano stati proposti diversi materiali e tipi di cellule, ci sono ancora numerosi problemi irrisolti nelle TEHV dovuti alla stabilità strutturale insufficiente delle valvole ingegnerizzate e agli effetti di "ritrazione" e "addensamento" delle valvole che portano al fallimento delle TEHV a medio/lungo termine (30), (31). Negli ultimi anni sono state sviluppate molte strategie per creare una TEHV funzionale (32), (27). Tra queste, un'opzione promettente rimane la possibilità di sfruttare matrici decellularizzate come substrato, date le loro caratteristiche favorevoli in termini di biocompatibilità. Infatti, il processo di decellularizzazione mira a fornire uno scheletro basato su matrice extracellulare con bassa immunogenicità e potenziale rigenerativo mantenuto e con un'ampia disponibilità di materiale di origine animale. Ad esempio, contributi interessanti precedenti (33), (34) hanno dimostrato la idoneità di una procedura di decellularizzazione con detergenti ionici/non ionici nel mantenere le proprietà meccaniche e ridurre l'immunogenicità del pericardio di suino. Oltre a ridurre drasticamente il contenuto di xenoantigeni, il trattamento ha aumentato la permeabilità del tessuto, consentendo l'uso di un biorreattore a perfusione per favorire il trasporto di massa attraverso la matrice pericardica e promuovere la cellulizzazione stabile (34). Il pericardio animale è, ad oggi, uno dei materiali eletti per la fabbricazione di protesi biologiche per valvole cardiache in virtù delle caratteristiche meccaniche simili a quelle della valvola aortica (35). Nonostante le diverse caratteristiche strutturali, meccaniche e morfologiche, negli ultimi decenni i pericardi bovino e suino sono stati alternativamente utilizzati come matrice adatta per la fabbricazione di valvole cardiache, ma nella prospettiva di una TEHV dove la strategia è quella di reintrodurre le cellule nella matrice dello scheletro, la struttura microscopica più lasca del pericardio suino sembra essere più appropriata (35). Questa considerazione è particolarmente valida se le favorevoli caratteristiche morfologiche del pericardio suino sono utilizzate in combinazione con un idoneo metodo di decellularizzazione basato sull'impiego di detergenti ionici e non ionici che mantengano l'integrità strutturale e la resistenza meccanica del pericardio umano (36) e suino (33) e aboliscano i xenoantigeni in quest'ultimo. La valvola aortica ha due principali popolazioni cellulari residenti: le cellule interstiziali valvolari (VIC), che sono responsabili della produzione e rinnovo fisiologici della matrice extracellulare, e le cellule endoteliali valvolari (VEC), che sono responsabili della mediazione dell'infiltrazione di lipidi e nutrienti nella matrice extracellulare della valvola (32). Idealmente, la migliore opzione come fonte di cellule per fabbricare una TEHV sarebbero le cellule autologhe delle valvole cardiache, ma queste cellule non sono sacrificabili. Date la fenotipizzazione simile a quella dei fibroblasti delle VIC e la loro origine mesenchimale (37), le cellule staminali derivate dal tessuto adiposo umano (hASC) sono risultate essere una promettente alternativa (38), (39). Infatti, oltre alla loro somiglianza potenzialmente adatta alle cellule valvolari, sono anche una fonte di cellule facilmente disponibile. I biorreattori a perfusione confinata, come l'UCup (41), consentono l'inoculazione e la coltura di cellule in costrutti tridimensionali, favorendo la crescita e la vitalità cellulare (41), (42) migliorando l'apporto di nutrienti alle cellule e consentendo la rimozione efficiente dei rifiuti. Rispetto ad altre tecniche di ricellularizzazione in matrici di valvole basate su colture statiche (43), (44), l'uso di questo sistema consente effettivamente una maggiore penetrazione delle cellule all'interno della matrice. Il presente progetto mira a produrre un tessuto ricellularizzato, mediante l'inoculazione di ASC in una matrice animale decellularizzata priva di xenoantigeni e residui aldeidici, sfruttando sistemi di biorreattori a perfusione confinata, in grado di rappresentare il primo approccio personalizzato all'ingegneria delle valvole aortiche nel contesto della tecnica di Ozaki, una procedura chirurgica che si basa sulla possibilità per il chirurgo di modellare il pericardio autologo, dopo un trattamento leggero con glutaraldeide, direttamente in sala operatoria, al fine di ottenere una valvola aortica adattata alle esigenze del paziente, con dinamiche del fluido ottimali (45). Questa procedura ha mostrato risultati incoraggianti a breve/medio termine finora, ma i risultati a lungo termine richiedono ulteriori indagini (46). Nel tentativo di ingegnerizzare il processo di auto-rimodellamento in vivo verso un tessuto funzionale piuttosto che fornire un tessuto completamente ingegnerizzato, il nostro tessuto ricellularizzato potrebbe essere utilizzato come alternativa "vivente" al pericardio autologo durante la tecnica di Ozaki. Con il vantaggio dell'eliminazione del trattamento con glutaraldeide, noto per essere una possibile causa di ingresso di calcio nelle protesi biologiche delle valvole cardiache (5) e di una maggiore biocompatibilità. Per raggiungere l'obiettivo generale del progetto, abbiamo sviluppato una procedura di ricellularizzazione razionale passo dopo passo adatta a produrre toppe di pericardio delle dimensioni adeguate per essere utilizzate durante la procedura di Ozaki sia per le procedure pediatriche che per quelle per adulti. Dopo aver riassunto e esaminato gli elementi chiave coinvolti nella fabbricazione delle valvole cardiache mediante ingegneria tissutale (TEHV) e nella medicina rigenerativa delle valvole cardiache (Capitolo I), stabiliremo una procedura preliminare di ricellularizione utilizzando bioreattori a perfusione confinata di piccola scala disponibili commercialmente, cellule interstiziali valvolari suine e il pericardio suino decellularizzato (Capitolo II). Ciò ci consentirà di definire i parametri della procedura di ricellularizione e stabilire un punto di riferimento futuro per l'esito della procedura di ricellularizione con le cellule staminali mesenchimali umane (hASC). Successivamente, dopo aver testato il pericardio bovino come possibile alternativa al pericardio suino, finora l'altro materiale impiegato per la fabbricazione biologica delle valvole cardiache, implementeremo le hASC nella stessa procedura di ricellularizione (Capitolo III), controllando l'espressione di proteine simili a quelle delle cellule interstiziali valvolari umane (hVIC) e la produzione di una matrice simile a quella delle valvole cardiache. Infine, una volta valutata l'efficacia della procedura di ricellularizione con le hASC, ci concentreremo sulla produzione di patch funzionali di dimensioni adeguate per la pratica clinica. Per fare ciò, scaleremo la procedura di ricellularizione mediante la progettazione razionale passo dopo passo e la prototipazione di un nuovo bioreattore, parallelamente all'uso di un dispositivo di perfusione confinata su scala più ampia già conforme alle normative GMP (il TCup), già adatto per la produzione di patch per la tecnica pediatrica di Ozaki (Capitolo IV).
Personalized valvular tissue engineering : a scaled up recellularization procedure to produce functional tissue for living aortic valve substitutes
Rizzi, Stefano
2023/2024
Abstract
Nowadays cardiovascular diseases represent one of the most relevant cause of death worldwide, even more than the sum of all forms of cancer; their treatment and prevention involve high direct and indirect costs for the society (1), (2). In case of heart valve diseases, specifically, current stented biological heart valve implants still report a reoperation rate of up to almost 40%, while innovative minimally invasive procedures (such as the transcatheter valve implant, TAVI) still suffer from structural degradation due to calcification over time and are associated with high peacemaker implantation (3). Deterioration of the biological implants is caused primarily by chronic inflammatory reaction due to the failure to detoxify the fixative remnants in the tissue (4), (5), and/or the incomplete removal of major xenoantigens (α-Gal) (6), (7), (8), (9), (10). Such problems appear to be even a heavier burden if considered for pediatric VHDs, where, in addition, the prosthetic devices should be able to also guarantee growth over time. In such cases it’s preferable to exploit surgical techniques such as the “switch” or “Ross” procedure that relies upon the usage of autologous substitutes (for the aortic position), trying to allow self-renewal and growth of the valve for the growing patient. However, this kind of technique is technically demanding and various complications have been reported to occur in the post-operative period (11). At the same time, mechanical heart valves still require a lifelong blood thinning therapy for the patient. A promising approach to circumvent the mentioned shortcomings was introduced by Langer and Vacanti in 1993 under the definition of Tissue Engineering (12), (13), (14), that involves the application of “the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function” (15). This strategy is based on three main ingredients: (1) autologous cells, harvested from the patients itself so to confer non-immunogenicity to the tissue engineered construct, (2) a supporting material (natural or synthetic) where cells can proliferate, and (3) biophysical stimuli (16), (17), (18), (19). In the framework of the clinical practice, important results in Tissue Engineering (TE) field have already been achieved: skin (20), (21), cartilage (22), bone (23), (24), and trachea (25). Nevertheless, contradictory results obtained in the attempt of engineering more complex tissues, still relegate TE in a pure theoretical discipline (26), (27). In addition, given the intrinsic complexity and heterogeneity of advanced cell-based therapy products, to date, no detailed standard or guidance is covering their manufacturing and thus Good Manufacturing Practice (GMP) is intended to demonstrate whether or not tissue engineered products are produced according to predefined manufacturing criteria, concerning both production and quality control (14), thus being suitable for in vivo trials. With the aim of being GMP compliant, a clinically relevant tissue for heart valve tissue engineering must meet numerous criteria, among others: non-immunogenicity, non-thrombogenicity, must promote cellular proliferation and viability, and must be functional in physiological conditions (28). In this perspective, one of the most crucial tissues to be repaired in case of disease is the aortic valve. Ideally, a tissue engineered heart valve (TEHV), but more in general a heart valve substitute, should include the capacity of self-repair, adaptively remodel, grow and be resistant to infections and thrombogenicity, as stated by one of the pioneers of the heart valve surgery, Emary Harken (29). Unfortunately, so far no currently available heart valve prosthesis possesses all these features. However, the design of TEHVs with a self-repair and remodeling capacity might address these unmet needs. Despite several materials and cell types have been proposed, there are still a number of unresolved problems in TEHVs due to insufficient structural stability of the engineered leaflets and consequent leaflet “retraction” and “thickening” effects (30), which result in TEHVs failure at mid-/long-term (31). In the past years many strategies have been developed to create a functional TEHV (32), (27). Among them, one promising option remain the possibility to exploit decellularized matrices as substrate, given their favorable characteristics in terms of biocompatibility, in fact the decellularization process aims to provide an extracellular matrix-based scaffold with low immunogenicity and retained regenerative potential, and of the large livestock availability. Indeed, for example, previous interesting contributions (33), (34) showed the suitability of a decellularization procedure with ionic/non-ionic detergents to maintain the mechanical properties and reduce the immunogenicity of porcine pericardium. Besides drastically reducing the content of xenoantigens, the treatment also increased the permeability of the tissue, thus making possible the employment of a perfusion bioreactor to enable mass transport through the pericardial matrix and promote stable cellularization (34). Animal pericardium is, to date, one of the elective materials for biological heart valve prosthesis fabrication in light of the similar mechanical features to these of the aortic valve (35). Despite their different structural, mechanical and morphological characteristics, in the last decades bovine and porcine pericardia have alternatively been used as a suitable matrix for heart valve fabrication, but in the perspective of a TEHV manufacturing where the strategy is to reintroduce cells into the scaffold matrix, the more loosen microstructure of the porcine pericardium appears, indeed, to be more appropriate (35). This consideration is especially valid if the favorable morphological features of porcine pericardium are used in combination with a suitable decellularization method based on the employment of ionic and non-ionic detergents that both maintained the structural integrity and mechanical resistance of human (36) and porcine (33) pericardium and abolishes xenoantigens in the latter. The aortic valve has two main resident cell populations: valvular interstitial cells (VIC), that are tasked with the physiological production and renewal of the ECM and the valve endothelial cells (VEC) that are in charge of the mediation of infiltration of lipids and nutrients in the valve’s ECM (32). Ideally the best option as a cell source to fabricate a TEHV would be autologous heart valve cells, but these kinds of cells are non-sacrificial. Given the fibroblast like phenotype of VIC and their mesenchymal origin (37), human adipose derived stem cells (hASC) have been shown to be a promising alternative (38), (39). Indeed, besides their potentially suitable resemblance with valve cells, they also are a readily available cell source. Confined perfusion bioreactors, such as the UCup (41), allow cell seeding and culture of cells in three dimensional constructs fostering cell growth and viability (41), (42) by enhancing the supply of nutrients to the cells and allowing the efficient removal of waste. Compared to other recellularization techniques to seed cells in valve-competent scaffolds based on static culture (43), (44), the employment of this system indeed enables a higher penetration of cells inside the scaffold. The present project aims to produce a recellularized tissue, by means of seeding ASC into a xenoantigens and aldehydic residue free decellularized animal matrix exploiting confined perfusion bioreactor systems, capable of representing the first personalized approach to aortic valve TE in the framework of the Ozaki technique, a surgical procedure that relies on the possibility by the surgeon of shaping the autologous pericardium, after mild glutaraldehyde treatment, directly in the surgical setting, so to obtain an aortic valve tailored on the patient’s need, with optimal fluid dynamics (45). This procedure showed encouraging short/midterm results, so far, but the long-term outcomes still require further investigations (46). In the attempt to engineer the process of in vivo self-remodel toward a functional tissue rather than to provide a fully engineered tissue, our recellularized tissue could be used as a “living” alternative to the autologous pericardium during the Ozaki technique. With the advantage of the elimination of the glutaraldehyde treatment, that is a well known cause of possible calcium influx into the biological heart valve prostheses (5) and of a higher biocompatibility. To achieve the overarching aim of the project, we developed a rational step-wise recellularization procedure suitable to produce pericardial patches of the proper dimension to be used during the Ozaki procedure both for the pediatric and the adult procedures. After summarizing and reviewing the key elements involved in TEHV fabrication and regenerative medicine of the heart valves (Chapter I), we will establish a preliminary recellularization procedure using commercially available small-scale confined perfusion bioreactors, porcine valvular interstitial cells and the decellularized porcine pericardium (Chapter II). This will allow us both to set the recellularization procedure parameters and to establish a future reference point for the outcome of the recellularization procedure with the hASC. Then, after testing as a possible alternative to the porcine pericardium, the bovine pericardium, to date the other elective material for biological heart valve fabrication, we will implement hASC in the same recellularization procedure (Chapter III) checking the expression of hVIC-like proteins and the production of valve-like matrix. Lastly, once assessed the effectiveness of the recellularization procedure with hASC we will focus on the production of functional patches of a suitable dimension for the clinical practice.To do this, we will scale-up the recellularization procedure involving the rational-step wise design and prototyping of a novel bioreactor, in parallel with the usage of an already GMP compliant larger-scale confined perfusion device (the TCup) suitable for the production of patches for the pediatric Ozaki technique (Chapter IV).File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_RIZZI.pdf
non accessibile
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/216073