Noncovalent interaction is one of the main characters of the chemistry of the present century due to its impact in the assembly of supramolecular systems. σ-Hole interactions are a subclass of noncovalent interactions and represent the focus of this PhD research activity. Concerning the wide field of supramolecular chemistry, i.e., the chemistry of intermolecular bonds, crystal engineering is the subject that mostly investigates and exploits σ-hole interactions for potential practical applications. Indeed, different interesting fields, such as drug design, supramolecular chemistry and functional molecular materials, provide evidences of their relevance. The occurrence of σ-hole interactions is attributable to the anisotropic distribution of the electron density on the outer regions of bonded atoms. The attractive interactions between these holes, considered as electrophilic sites, and nucleophiles became a suitable tool for driving recognition and self-assembly processes, in particular in crystalline solid-state, which will be mainly considered in the experimental section of this research. Specifically, the current PhD activity starts with the investigation of different compounds involving transition metals able to form σ-hole interactions. The results concerning groups 11, 8, 7 and 5 will be presented in this thesis. Useful neutral compounds, e.g. catalysts or drugs derivatives, have been initially considered, after that, interesting outcomes have been reached also with anionic compounds. In the second part of this thesis, an analogous approach has been adopted to deeply explore the more investigated p-block, focusing on the behaviour of charged compounds especially in group 17 and 14. These findings underline the relevance of this topic and will hopefully promote new stimulating perspectives into this research field.
L'interazione noncovalente è uno dei protagonisti della chimica del secolo presente, visto la sua importanza nei processi di riconoscimento di sistemi supramolecolari. Le interazioni σ-Hole sono una sottoclasse delle interazioni noncovalenti e rappresentano il principale argomento di ricerca di questa attività di dottorato. L'ingegneria cristallina è considerata una branca della chimica supramolecolare che impiega il potenziale delle interazioni σ-hole, in stato solido, in sistemi utili quali composti d'interesse biologico o catalizzatori. La razionalizzazione del concetto di σ-hole è intrinsecamente legata alla distribuzione anisotropica della densità elettronica sulla superficie degli atomi nelle molecole. Le interazioni attrattive tra queste zone, considerate siti elettrofili, e i siti nucleofili diventa uno strumento utile per influenzare i processi di riconoscimento e formazione dei cristalli in stato solido, che vengono presentati in questa tesi. In particolare, l'attività di ricerca parte dallo studio delle interazioni σ-hole formate da metalli di transizione, appartenenti ai gruppi 11, 8, 7 e 5. Inizialmente sono stati considerati composti neutri con applicazioni quali catalizzatori o derivati di farmaci, successivamente l'attenzione è stata spostata a composti anionici. La seconda parte dell'attività di ricerca utilizza un approccio simile per studiare le interazioni σ-hole formate da composti contenenti elementi appartenenti al blocco p, in particolare ai gruppi 17 e 14. I risultati ottenuti mostrano l'importanza di questo argomento di ricerca e del proseguimento del suo studio.
σ-Hole Interactions : a journey from d to p-block elements
CALABRESE, MIRIAM
2023/2024
Abstract
Noncovalent interaction is one of the main characters of the chemistry of the present century due to its impact in the assembly of supramolecular systems. σ-Hole interactions are a subclass of noncovalent interactions and represent the focus of this PhD research activity. Concerning the wide field of supramolecular chemistry, i.e., the chemistry of intermolecular bonds, crystal engineering is the subject that mostly investigates and exploits σ-hole interactions for potential practical applications. Indeed, different interesting fields, such as drug design, supramolecular chemistry and functional molecular materials, provide evidences of their relevance. The occurrence of σ-hole interactions is attributable to the anisotropic distribution of the electron density on the outer regions of bonded atoms. The attractive interactions between these holes, considered as electrophilic sites, and nucleophiles became a suitable tool for driving recognition and self-assembly processes, in particular in crystalline solid-state, which will be mainly considered in the experimental section of this research. Specifically, the current PhD activity starts with the investigation of different compounds involving transition metals able to form σ-hole interactions. The results concerning groups 11, 8, 7 and 5 will be presented in this thesis. Useful neutral compounds, e.g. catalysts or drugs derivatives, have been initially considered, after that, interesting outcomes have been reached also with anionic compounds. In the second part of this thesis, an analogous approach has been adopted to deeply explore the more investigated p-block, focusing on the behaviour of charged compounds especially in group 17 and 14. These findings underline the relevance of this topic and will hopefully promote new stimulating perspectives into this research field.File | Dimensione | Formato | |
---|---|---|---|
2024_02_Calabrese.pdf
accessibile in internet per tutti
Descrizione: Tesi di Dottorato Miriam Calabrese
Dimensione
5.19 MB
Formato
Adobe PDF
|
5.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/216553