The renovation of the global energy management towards a sustainable system based on renewable power sources is becoming more urgent year by year. With fossil fuel reserves running out and the unreliability of green energy sources like wind and solar, affected by weather condition and day-night cycle, hydrogen gas is emerging as a viable environment-friendly energy vector and storage medium. Among the several methods to produce H2, electrolysis has large potential being a carbon neutral process, as it generates hydrogen through the electrochemical conversion of water, with only oxygen as by-product. In addition, its simple integration with renewable sources of electrical energy makes it one of the best candidates for the production of the so-called green hydrogen. Therefore, photoelectrochemical (PEC) water splitting technology is driving interest as a zero-emission solution for hydrogen production, combining solar light as energy input and a clean process like water electrolysis in a single system. In particular, PEC cells with tandem configuration are promising candidates for the application of this technology, due to the ability of providing the necessary driving force for water splitting by summation of the electrical output of semiconductor materials employed at both the cathode and anode of the electrochemical device. Moreover, monolithic integration of photoelectrodes is an interesting objective since it comprises a simple structure, optimal light management, and easier separation of anodic and cathodic products (O2 and H2). In this work, the bottom-up fabrication of a PEC device was developed choosing, among most promising semiconductors, BiVO4 and Cu2ZnSnS4 (CZTS) as photoanode and photocathode active materials, respectively. Different synthesis routes were explored and tuned to best exploit material properties on a transparent conductive substrate allowing a back-to-back configuration, with light source powering the device from the anode side. The entire structure of single electrodes was considered: while favouring cheap and scalable wet-phase techniques, the fabrication of photoanodes was explored with SnO2/BiVO4 heterojunction and integration of cobalt borate (Co-Bi) catalysts combined with Ti3C2Tx MXene co-catalyst. On the one hand, a novel electrochemical synthesis of microstructured SnO2 layer was developed, though the integration into a heterojunction did not perform as expected. Nevertheless, an efficient photoanode was obtained with the implementation of the MXene/Co-Bi catalyst which was capable to cope with the BiVO4 limitations in terms of electron transport and slow oxygen evolution reaction (OER) kinetics. On photocathode side, synthesis route and electrode structure were optimized for backside illumination through a simple spin coating technique, with the introduction Cd doping of CZTS. A typical electrode layout with a p-n junction comprising a CdS buffer layer and Pt catalysts decoration was implemented. Material characterization techniques such as Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Raman spectroscopy and Atomic Force Microscopy (AFM) were employed for the investigation of synthesis products, while photoelectrochemical testing with linear scan voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS) were used as main methods for the assessment of the photoelectrode performances. Eventually, for the monolithic integration of the developed photoactive electrodes a specific setup was designed and 3D printed to test the capability of the PEC cell in bias-free condition.
Il rinnovamento della gestione dell’energia globale verso un sistema sostenibile basato su fonti di energia rinnovabile diventa sempre più urgente di anno in anno. Con le riserve di combustibili fossili in esaurimento e l'inaffidabilità delle fonti di energia verde come l’eolico e il solare, influenzate dalle condizioni meteorologiche e dal ciclo giorno-notte, il gas idrogeno sta emergendo come un vettore energetico e un mezzo di stoccaggio dell’energia ambientalmente sostenibile. Tra i vari metodi per produrre H2, l'elettrolisi ha un grande potenziale essendo un processo a zero emissioni, poiché genera idrogeno attraverso la conversione elettrochimica dell'acqua, con il solo ossigeno come sottoprodotto. Inoltre, la sua semplice integrazione con fonti rinnovabili di energia elettrica rende l’elettrolisi uno dei migliori candidati per la produzione del cosiddetto idrogeno verde. Pertanto, la tecnologia del water splitting fotoelettrochimico (PEC) sta suscitando interesse come soluzione a zero emissioni per la produzione di idrogeno, combinando la luce solare come input energetico e un processo pulito come l'elettrolisi dell'acqua in un unico sistema. In particolare, le celle PEC con configurazione tandem sono candidati promettenti per l'applicazione di questa tecnologia, grazie alla capacità di fornire la l’energia necessaria per la scissione dell'acqua mediante la somma degli output elettrici dei materiali semiconduttori integrati sia nel catodo che nell'anodo del dispositivo elettrochimico. Inoltre, l'integrazione monolitica dei fotoelettrodi è un obiettivo interessante poiché combina una struttura semplice, una gestione ottimale della luce e una più facile separazione dei prodotti anodici e catodici (O2 e H2). In questo lavoro, è stata sviluppata la fabbricazione di un dispositivo PEC in tutti i suoi aspetti, scegliendo, tra i semiconduttori più promettenti, BiVO4 e Cu2ZnSnS4 (CZTS) come materiali attivi per fotoanodo e fotocatodo, rispettivamente. Sono state esplorate e ottimizzate diverse vie di sintesi per sfruttare al meglio le proprietà dei materiali su un substrato conduttivo trasparente consentendo una configurazione fronte-retro, con una sorgente luminosa che alimenta il dispositivo dal lato dell'anodo. È stata considerata l'intera struttura dei singoli elettrodi: favorendo tecniche da fase liquida, economiche e scalabili, è stata esplorata la fabbricazione di fotoanodi con eterogiunzione SnO2/BiVO4 e l’integrazione di catalizzatori di borato di cobalto (Co-Bi) combinati con co-catalizzatore MXene Ti3C2Tx. Da un lato, è stata sviluppata una nuova sintesi elettrochimica di uno strato microstrutturato di SnO2, anche se l'integrazione in una eterogiunzione non ha dato i risultati sperati. Tuttavia, è stato ottenuto un fotoanodo efficiente tramite l'implementazione del catalizzatore MXene/Co-Bi, che ha permesso di affrontare le limitazioni del BiVO4 in termini di trasporto degli elettroni e di lenta cinetica della reazione di evoluzione dell'ossigeno (OER). Riguardo il fotocatodo, la via di sintesi e la struttura dell'elettrodo sono stati ottimizzati per l'illuminazione dal retro attraverso una semplice tecnica di spin-coating, con l'introduzione del drogaggio con cadmio del CZTS. È stata implementata una tipica configurazione dell'elettrodo con una giunzione p-n comprendente un buffer layer di CdS e catalizzatori in Pt. Tecniche di caratterizzazione dei materiali come la microscopia elettronica a scansione (SEM), la diffrazione ai raggi X (XRD), la spettroscopia Raman e la microscopia a forza atomica (AFM) sono state impiegate per l'indagine dei prodotti di sintesi, mentre i test fotoelettrochimici con voltammetria a scansione lineare (LSV) e spettroscopia di impedenza elettrochimica (EIS) sono stati utilizzati come principali metodi per la valutazione delle prestazioni dei fotoelettrodi. Infine, per l'integrazione monolitica degli elettrodi fotoattivi sviluppati è stato progettato un setup specifico e stampato in 3D per testare la capacità della cella PEC in assenza di polarizzazione indotta.
Fabrication of a photoelectrochemical device for bias-free water splitting
DELL'ORO, RUBEN
2023/2024
Abstract
The renovation of the global energy management towards a sustainable system based on renewable power sources is becoming more urgent year by year. With fossil fuel reserves running out and the unreliability of green energy sources like wind and solar, affected by weather condition and day-night cycle, hydrogen gas is emerging as a viable environment-friendly energy vector and storage medium. Among the several methods to produce H2, electrolysis has large potential being a carbon neutral process, as it generates hydrogen through the electrochemical conversion of water, with only oxygen as by-product. In addition, its simple integration with renewable sources of electrical energy makes it one of the best candidates for the production of the so-called green hydrogen. Therefore, photoelectrochemical (PEC) water splitting technology is driving interest as a zero-emission solution for hydrogen production, combining solar light as energy input and a clean process like water electrolysis in a single system. In particular, PEC cells with tandem configuration are promising candidates for the application of this technology, due to the ability of providing the necessary driving force for water splitting by summation of the electrical output of semiconductor materials employed at both the cathode and anode of the electrochemical device. Moreover, monolithic integration of photoelectrodes is an interesting objective since it comprises a simple structure, optimal light management, and easier separation of anodic and cathodic products (O2 and H2). In this work, the bottom-up fabrication of a PEC device was developed choosing, among most promising semiconductors, BiVO4 and Cu2ZnSnS4 (CZTS) as photoanode and photocathode active materials, respectively. Different synthesis routes were explored and tuned to best exploit material properties on a transparent conductive substrate allowing a back-to-back configuration, with light source powering the device from the anode side. The entire structure of single electrodes was considered: while favouring cheap and scalable wet-phase techniques, the fabrication of photoanodes was explored with SnO2/BiVO4 heterojunction and integration of cobalt borate (Co-Bi) catalysts combined with Ti3C2Tx MXene co-catalyst. On the one hand, a novel electrochemical synthesis of microstructured SnO2 layer was developed, though the integration into a heterojunction did not perform as expected. Nevertheless, an efficient photoanode was obtained with the implementation of the MXene/Co-Bi catalyst which was capable to cope with the BiVO4 limitations in terms of electron transport and slow oxygen evolution reaction (OER) kinetics. On photocathode side, synthesis route and electrode structure were optimized for backside illumination through a simple spin coating technique, with the introduction Cd doping of CZTS. A typical electrode layout with a p-n junction comprising a CdS buffer layer and Pt catalysts decoration was implemented. Material characterization techniques such as Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Raman spectroscopy and Atomic Force Microscopy (AFM) were employed for the investigation of synthesis products, while photoelectrochemical testing with linear scan voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS) were used as main methods for the assessment of the photoelectrode performances. Eventually, for the monolithic integration of the developed photoactive electrodes a specific setup was designed and 3D printed to test the capability of the PEC cell in bias-free condition.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis - Ruben Dell'Oro.pdf
non accessibile
Dimensione
16.59 MB
Formato
Adobe PDF
|
16.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217257